期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
广义Morrey空间中奇异积分算子和极大算子的加权不等式(英文)
1
作者 刘岚 《常德师范学院学报(自然科学版)》 2002年第3期17-20,共4页
证明了广义极大算子和奇异积分算子在广义Merrey空间中的加权不等式 。
关键词 广义MORREY空间 加权不等式 广义极大算子 奇异积分算子 C1(θ)权 无权不等式
下载PDF
Embeddings of weighted Sobolev spaces and degenerate elliptic problems 被引量:2
2
作者 GUO ZongMing MEI LinFeng +1 位作者 WAN FangShu GUAN XiaoHong 《Science China Mathematics》 SCIE CSCD 2017年第8期1399-1418,共20页
New embeddings of some weighted Sobolev spaces with weights a(x)and b(x)are established.The weights a(x)and b(x)can be singular.Some applications of these embeddings to a class of degenerate elliptic problems of the f... New embeddings of some weighted Sobolev spaces with weights a(x)and b(x)are established.The weights a(x)and b(x)can be singular.Some applications of these embeddings to a class of degenerate elliptic problems of the form-div(a(x)?u)=b(x)f(x,u)in?,u=0 on??,where?is a bounded or unbounded domain in RN,N 2,are presented.The main results of this paper also give some generalizations of the well-known Caffarelli-Kohn-Nirenberg inequality. 展开更多
关键词 positive weak solutions Sobolev type embeddings weighted elliptic equations Caffarelli-Kohn- Nirenberg inequality
原文传递
TWO-WEIGHT NORM INEQUALITY FOR IMAGINARY POWERS OF A LAPLACE OPERATOR
3
作者 Jianlin ZHANG Department of Mathematics and Physics,Zhongyuan Institute of Technology,Zhengzhou 450007,China Department of Mathematics,Beijing Institute of Technology,Beijing 100081,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第3期403-408,共6页
We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove ... We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove that the two-weighted norm inequality holds whenever for some t 〉 1, (μ^t, v^t) ∈ Ap, or if (μ, v) ∈Ap, where μ and v^-1/(p-1) satisfy the growth condition and reverse doubling property. 展开更多
关键词 Ap condition Laplace operator weighted norm inequality.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部