Solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity. Many programs are being initiated in the United Stat...Solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity. Many programs are being initiated in the United States, Europe, Japan and so on. The funding for SOFC development worldwide has risen dramatically and this trend is expected to continue for at least the next decades. These development programs are also investigating wider applications of SOFCs in stationary, residential, transportation and military sectors. Finally, it is summarized the key materials and fabrication processes of SOFC in this paper.展开更多
The present study was carried out on Ficuscarica L. cultivated in the northwestern desert of Egypt. Plant materials (leaves and fruits) were collected from three polluted locations at a distance of 500-700, 1,000-1,...The present study was carried out on Ficuscarica L. cultivated in the northwestern desert of Egypt. Plant materials (leaves and fruits) were collected from three polluted locations at a distance of 500-700, 1,000-1,250 and 3,000-3,500 m respectively away from the cement factory at EI-Hammam city, and a location of relatively clean air considered a control at 5,000-6,000 m away from this factory. The deposit cement dust washed from the surface leaf area of plant study was found to be 4.96, 4.21, 0.51 and 0.29 lag/cm2 at the four locations, respectively. Cement in more polluted locations increased mortality of young branches leading to a reduction in the height and yield of fig trees. The deposition of cement pollutants tothe loamy sandy soil of the present study alteredsoil chemical characteristics. The results showed that, biomass of fruits/tree, number of branches/tree and number of fruits/branch in polluted locations were significantly lower than those of the control one. Cement dust decreased leaf total chlorophyll content leading to a reduction in the economic yield (up to 50%). Metabolic constituents (carbohydrates, proteins, amino acid and proline) and essential elements (Fe, Mg, Na, Ca, and K) were studied in two types of fruits on fig trees (mature and premature). Thallium as a toxic metal was predicted in edible mature fruits, and the results showed that the concentration of thallium parts per billion (ppb) in polluted locations was significantly higher than those of the control one. The results revealed that fruits of fig plants at polluted sites showed quantitative and qualitative deteriorations.展开更多
基金support from the NSFC key projects (50730004, 50872150 )MOST projects(2009DFA6136)MOE projects(NCET-06-0203,20060290005)
文摘Solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity. Many programs are being initiated in the United States, Europe, Japan and so on. The funding for SOFC development worldwide has risen dramatically and this trend is expected to continue for at least the next decades. These development programs are also investigating wider applications of SOFCs in stationary, residential, transportation and military sectors. Finally, it is summarized the key materials and fabrication processes of SOFC in this paper.
文摘The present study was carried out on Ficuscarica L. cultivated in the northwestern desert of Egypt. Plant materials (leaves and fruits) were collected from three polluted locations at a distance of 500-700, 1,000-1,250 and 3,000-3,500 m respectively away from the cement factory at EI-Hammam city, and a location of relatively clean air considered a control at 5,000-6,000 m away from this factory. The deposit cement dust washed from the surface leaf area of plant study was found to be 4.96, 4.21, 0.51 and 0.29 lag/cm2 at the four locations, respectively. Cement in more polluted locations increased mortality of young branches leading to a reduction in the height and yield of fig trees. The deposition of cement pollutants tothe loamy sandy soil of the present study alteredsoil chemical characteristics. The results showed that, biomass of fruits/tree, number of branches/tree and number of fruits/branch in polluted locations were significantly lower than those of the control one. Cement dust decreased leaf total chlorophyll content leading to a reduction in the economic yield (up to 50%). Metabolic constituents (carbohydrates, proteins, amino acid and proline) and essential elements (Fe, Mg, Na, Ca, and K) were studied in two types of fruits on fig trees (mature and premature). Thallium as a toxic metal was predicted in edible mature fruits, and the results showed that the concentration of thallium parts per billion (ppb) in polluted locations was significantly higher than those of the control one. The results revealed that fruits of fig plants at polluted sites showed quantitative and qualitative deteriorations.