针对电力变压器的故障诊断问题,提出了一种可用于海量监测数据的智能故障诊断方法。首先设计了无源射频识别(radio frequency identification,RFID)传感器标签用于测量变压器的振动信号,该设计具有结构简单、便利性强和功耗低等优点。...针对电力变压器的故障诊断问题,提出了一种可用于海量监测数据的智能故障诊断方法。首先设计了无源射频识别(radio frequency identification,RFID)传感器标签用于测量变压器的振动信号,该设计具有结构简单、便利性强和功耗低等优点。针对于测量的变压器振动信号数量大、维度高、成分复杂、信噪比低等特点,利用深度学习技术中堆叠自编码器对测量的信号进行特征提取,提取的特征具有相同状态高度聚集,不同状态明显分离的优点。随后,基于提取的海量特征数据,应用加权贝叶斯分类模型进行故障诊断。为进一步提高故障诊断方法的性能,提出了混沌量子粒子群算法分别对堆叠自编码器和加权贝叶斯分类模型的参数进行优化。通过一个10 kV变压器的故障诊断实验表明,设计的无源RFID传感器标签能可靠地获取变压器振动信号,提出的故障诊断方法具有较高的故障诊断正确率。展开更多
Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequen...Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.展开更多
文摘针对电力变压器的故障诊断问题,提出了一种可用于海量监测数据的智能故障诊断方法。首先设计了无源射频识别(radio frequency identification,RFID)传感器标签用于测量变压器的振动信号,该设计具有结构简单、便利性强和功耗低等优点。针对于测量的变压器振动信号数量大、维度高、成分复杂、信噪比低等特点,利用深度学习技术中堆叠自编码器对测量的信号进行特征提取,提取的特征具有相同状态高度聚集,不同状态明显分离的优点。随后,基于提取的海量特征数据,应用加权贝叶斯分类模型进行故障诊断。为进一步提高故障诊断方法的性能,提出了混沌量子粒子群算法分别对堆叠自编码器和加权贝叶斯分类模型的参数进行优化。通过一个10 kV变压器的故障诊断实验表明,设计的无源RFID传感器标签能可靠地获取变压器振动信号,提出的故障诊断方法具有较高的故障诊断正确率。
基金Project(2009BADB9B09)supported by the National Key Technologies R&D Program of China
文摘Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.