期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
衍射深度神经网络下轨道角动量态的校正
1
作者 陈侃松 刘柏麟 +3 位作者 韩成昊 赵生妹 王乐 詹海潮 《光学学报》 EI CAS CSCD 北大核心 2023年第24期79-87,共9页
衍射深度神经网络(D2NN)通过无源衍射层的深度学习,可实现快速高效的深度学习功能。利用多组不同湍流强度干扰下的轨道角动量(OAM)态和目标OAM态组成的训练数据集对设计的D2NN网络组件进行训练,更新和优化组件中各参数,直到由D2NN输出的... 衍射深度神经网络(D2NN)通过无源衍射层的深度学习,可实现快速高效的深度学习功能。利用多组不同湍流强度干扰下的轨道角动量(OAM)态和目标OAM态组成的训练数据集对设计的D2NN网络组件进行训练,更新和优化组件中各参数,直到由D2NN输出的OAM态与目标OAM态的平方误差损失函数达到预定的阈值,便可获得实现高速、高精度的OAM波前校正的D2NN组件。测试结果表明:D2NN迭代次数、衍射层数、训练参数的选择会对组件的校正速度和准确度产生影响,通过D2NN可以实现受大气湍流干扰的OAM态的高精度校正;当大气湍流强度为10^(-14) m^(-2/3)、D2NN网络层层数为8时,组件性能最佳,其损失函数相比5层网络层的D2NN降低超过45.45%;而对于更强大气湍流的干扰,可以通过增加网络训练时的迭代次数来提高校正的准确度,迭代20次后损失函数的值降低率达到98.03%;对于湍流强度较弱的干扰,训练时采用纯相位参数,组件的性能更优;而对于强湍流的干扰,训练时采用相位参数与振幅参数两者相结合的方法,组件的性能更优;除此之外,OAM态的拓扑荷值越小,校正后的失真度越小。 展开更多
关键词 衍射深度神经网络 无源衍射层 轨道角动量态 大气湍流 相位屏
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部