The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical pro...The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical properties of the Sn-0.6 Cu-0.05 Ni-Ge(SCNG) lead-free solder and the interfacial reaction with the Cu substrate. The melting behavior, microstructure, tensile strength, and wettability of the SCNG-x(x=Ag, Bi, In, Sb) solders were examined. The findings revealed that the introduction of Ag, Bi, In, and Sb minimally altered the solidus temperature, liquidus temperature, and tensile strength of the solder. However, the cooling behavior and solidified microstructure of the solder were affected by the concentration of the alloying elements. The wettability of the SCNG solder was improved with the doping of the alloying elements except Sb. The thickness of intermetallic layer was increased by the addition of the alloying elements and was related to the cooling behavior of the solder. The morphology of intermetallic layer between the SCNG-x solders and the Cu substrate was different from that of the typical SAC solders. In conclusion, alloying the SCNG solder with Ag, Bi, In or Sb is able to improve particular properties of the solder.展开更多
Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron micros...Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.展开更多
基金King Mongkut’s Institute of Technology Ladkrabang and the National Research Council of Thailand for the financial sponsorship of this project
文摘The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical properties of the Sn-0.6 Cu-0.05 Ni-Ge(SCNG) lead-free solder and the interfacial reaction with the Cu substrate. The melting behavior, microstructure, tensile strength, and wettability of the SCNG-x(x=Ag, Bi, In, Sb) solders were examined. The findings revealed that the introduction of Ag, Bi, In, and Sb minimally altered the solidus temperature, liquidus temperature, and tensile strength of the solder. However, the cooling behavior and solidified microstructure of the solder were affected by the concentration of the alloying elements. The wettability of the SCNG solder was improved with the doping of the alloying elements except Sb. The thickness of intermetallic layer was increased by the addition of the alloying elements and was related to the cooling behavior of the solder. The morphology of intermetallic layer between the SCNG-x solders and the Cu substrate was different from that of the typical SAC solders. In conclusion, alloying the SCNG solder with Ag, Bi, In or Sb is able to improve particular properties of the solder.
基金Project(50705022) supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University
文摘Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.