针对传统的基于自编码器的无监督异常声音检测方法存在特征表达能力不足的问题,提出一种基于注意力-跳跃自编码器-生成对抗网络的无监督异常声音检测方法ASAE-GAN(Attentional Skip-connected Auto Encoder and Generative Adversarial ...针对传统的基于自编码器的无监督异常声音检测方法存在特征表达能力不足的问题,提出一种基于注意力-跳跃自编码器-生成对抗网络的无监督异常声音检测方法ASAE-GAN(Attentional Skip-connected Auto Encoder and Generative Adversarial Network)。ASAE-GAN在跳跃自编码器和生成对抗网络的基础上,引入通道间注意力机制和时间注意力机制,增强模型的特征表达能力。使用MIMII数据集中的pump声音数据进行实验,评价指标使用AUC分数。结果表明:ASAE-GAN的平均AUC分数相比较于AE、UNET和Skip-GANomaly分别提升了16.27%、14.23%和6.55%,验证了其在无监督异常声音检测方面的优越性。展开更多
传统的监督异常检测方法快速发展,为了减少对标签的依赖,自监督预训练方法得到了广泛的研究,同时研究表明额外的内在语义知识嵌入对于表格学习至关重要。为了挖掘表格数据当中存在的丰富知识信息,提出了一种基于知识增强的自监督表格数...传统的监督异常检测方法快速发展,为了减少对标签的依赖,自监督预训练方法得到了广泛的研究,同时研究表明额外的内在语义知识嵌入对于表格学习至关重要。为了挖掘表格数据当中存在的丰富知识信息,提出了一种基于知识增强的自监督表格数据异常检测方法(self-supervised tabular data anomaly detection method based on knowledge enhancement,STKE)并进行了改进。提出的数据处理模块将领域知识(语义)、统计数学知识融入到特征构建中,同时自监督预训练(参数学习)提供上下文知识先验,实现表格数据的丰富信息迁移。在原始数据上采用mask机制,通过学习相关的非遮掩特征来学习遮掩特征,同时预测在数据隐层空间加性高斯噪声的原始值。该策略促使模型即使在有噪声输入的情况下也能恢复原始的特征信息。使用混合注意机制有效提取数据特征之间的关联信息。在6个数据集上的实验结果展现了提出的方法优越的性能。展开更多
信号异常检测方法具有普遍的研究意义和广泛的实用价值.该文首先研究Laplace周期图的统计性质,再结合用于关联性检验的有力工具互信息的刀切估计(JMI),对两段信号的Laplace周期图对数比进行统计检验,可判断所检测信号是否具有相同的归...信号异常检测方法具有普遍的研究意义和广泛的实用价值.该文首先研究Laplace周期图的统计性质,再结合用于关联性检验的有力工具互信息的刀切估计(JMI),对两段信号的Laplace周期图对数比进行统计检验,可判断所检测信号是否具有相同的归一化动态特征.作为一种半监督的异常检测方法,可在已知正常信号标签的情况下,以动态特征检测出未知信号是否异常.统计模拟试验和滚动轴承数据的实例分析显示,该文所提的新方法优于Laplace周期图分别与B样条F检验(B-spline F test)、Ljung-Box Q检验(LBQ)、游程检验(run test)相结合的方法,兼顾了稳健性和较低的犯错概率,具备一定的实用性和有效性.展开更多
文摘针对传统的基于自编码器的无监督异常声音检测方法存在特征表达能力不足的问题,提出一种基于注意力-跳跃自编码器-生成对抗网络的无监督异常声音检测方法ASAE-GAN(Attentional Skip-connected Auto Encoder and Generative Adversarial Network)。ASAE-GAN在跳跃自编码器和生成对抗网络的基础上,引入通道间注意力机制和时间注意力机制,增强模型的特征表达能力。使用MIMII数据集中的pump声音数据进行实验,评价指标使用AUC分数。结果表明:ASAE-GAN的平均AUC分数相比较于AE、UNET和Skip-GANomaly分别提升了16.27%、14.23%和6.55%,验证了其在无监督异常声音检测方面的优越性。
文摘传统的监督异常检测方法快速发展,为了减少对标签的依赖,自监督预训练方法得到了广泛的研究,同时研究表明额外的内在语义知识嵌入对于表格学习至关重要。为了挖掘表格数据当中存在的丰富知识信息,提出了一种基于知识增强的自监督表格数据异常检测方法(self-supervised tabular data anomaly detection method based on knowledge enhancement,STKE)并进行了改进。提出的数据处理模块将领域知识(语义)、统计数学知识融入到特征构建中,同时自监督预训练(参数学习)提供上下文知识先验,实现表格数据的丰富信息迁移。在原始数据上采用mask机制,通过学习相关的非遮掩特征来学习遮掩特征,同时预测在数据隐层空间加性高斯噪声的原始值。该策略促使模型即使在有噪声输入的情况下也能恢复原始的特征信息。使用混合注意机制有效提取数据特征之间的关联信息。在6个数据集上的实验结果展现了提出的方法优越的性能。
文摘信号异常检测方法具有普遍的研究意义和广泛的实用价值.该文首先研究Laplace周期图的统计性质,再结合用于关联性检验的有力工具互信息的刀切估计(JMI),对两段信号的Laplace周期图对数比进行统计检验,可判断所检测信号是否具有相同的归一化动态特征.作为一种半监督的异常检测方法,可在已知正常信号标签的情况下,以动态特征检测出未知信号是否异常.统计模拟试验和滚动轴承数据的实例分析显示,该文所提的新方法优于Laplace周期图分别与B样条F检验(B-spline F test)、Ljung-Box Q检验(LBQ)、游程检验(run test)相结合的方法,兼顾了稳健性和较低的犯错概率,具备一定的实用性和有效性.