期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
深度神经网络模型水印研究进展
1
作者 谭景轩 钟楠 +2 位作者 郭钰生 钱振兴 张新鹏 《上海理工大学学报》 CAS CSCD 北大核心 2024年第3期225-242,共18页
随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所... 随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所具备的不同条件,将其分为白盒水印、黑盒水印和无盒水印3类方法,并对各类方法按照水印嵌入机制或适用模型对象的不同进行细分,深入分析了各类方法的主要原理、实现手段和发展趋势。然后,对模型水印的攻击方法进行了系统总结和归类,揭示了神经网络水印面对的主要威胁和安全问题。在此基础上,对各类模型水印中的经典方法进行了性能比较和分析,明确了各个方法的优势和不足,帮助研究者根据实际的应用场景选用合适的水印方法,为后续研究提供基础。最后,讨论了当前深度神经网络模型水印面临的挑战,并展望未来可能的研究方向,旨在为相关的研究提供参考。 展开更多
关键词 深度神经网络 知识产权保护 神经网络水印 水印 水印 无盒水印 水印攻击 模型安全
下载PDF
深度神经网络模型版权保护方案综述 被引量:7
2
作者 樊雪峰 周晓谊 +3 位作者 朱冰冰 董津位 牛俊 王鹤 《计算机研究与发展》 EI CSCD 北大核心 2022年第5期953-977,共25页
深度神经网络(deepneuralnetwork,DNN)等新兴技术以前所未有的性能在工业互联网安全中得到广泛发展和应用.然而,训练DNN模型需要在目标应用程序中捕获大量不同场景的专有数据、广泛的计算资源,以及在专家的协助下调整网络拓扑结构并正... 深度神经网络(deepneuralnetwork,DNN)等新兴技术以前所未有的性能在工业互联网安全中得到广泛发展和应用.然而,训练DNN模型需要在目标应用程序中捕获大量不同场景的专有数据、广泛的计算资源,以及在专家的协助下调整网络拓扑结构并正确训练参数.因此,DNN模型应当作为有价值的知识产权,从技术上保护其不被非法复制、重新分发或滥用.受经典水印技术被用于保护与多媒体内容相关的知识产权的启发,神经网络水印是目前最受研究者关注的DNN模型版权保护方法.迄今为止,学术界对神经网络水印在DNN模型知识产权保护中的应用尚缺乏完整描述.调研了近5年CCF推荐期刊和会议等关于该领域的相关工作,从水印的嵌入和提取的视角,将神经网络水印在原有的白盒水印和黑盒水印分类的基础上,扩充了灰盒水印和无盒水印2种分类,对白盒水印和黑盒水印方法根据其水印嵌入的不同思路和不同任务模型进行了更详细的分类总结,并对4类水印方法的性能进行了对比.最后,探讨了神经网络水印未来面临的挑战和可研究的方向,旨在为学者进一步推动基于神经网络水印的DNN模型版权保护的发展提供指导。 展开更多
关键词 版权保护 深度神经网络 水印 水印 水印 无盒水印
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部