本文运用 Leggett-Williams 不动点定理讨论了具有平均曲率算子 Robin 边值问题三个正解的存在性, 其中, Z 表示整数集,[1, T ]Z := {1, 2, ..., T − 1, T}, T ≥ 2 是正整数,, s ∈ (−1, 1),非线性项 f : [1, T ]Z × [0, ∞) → [...本文运用 Leggett-Williams 不动点定理讨论了具有平均曲率算子 Robin 边值问题三个正解的存在性, 其中, Z 表示整数集,[1, T ]Z := {1, 2, ..., T − 1, T}, T ≥ 2 是正整数,, s ∈ (−1, 1),非线性项 f : [1, T ]Z × [0, ∞) → [0, ∞) 连续,∆ 是前项差分算子。展开更多
文摘本文运用 Leggett-Williams 不动点定理讨论了具有平均曲率算子 Robin 边值问题三个正解的存在性, 其中, Z 表示整数集,[1, T ]Z := {1, 2, ..., T − 1, T}, T ≥ 2 是正整数,, s ∈ (−1, 1),非线性项 f : [1, T ]Z × [0, ∞) → [0, ∞) 连续,∆ 是前项差分算子。
基金Supported by the National Natural Science Foundation of China(40876010,49906013)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Science(XDA01020304)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20110420)the Natural Science Foundation from the Education Bureau of Anhui Province(KJ2010A128,KJ2010B360)
基金the National Natural Science Foundation of China (40531006 and 10471039)the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)in part by E-Insitutes of Shanghai Municipal Education Commission (N.E03004).