等价无穷小是极限理论的一个重要组成部分,选取合适的等价无穷小代换,可以极大地简化极限问题的处理。使用等价无穷小需要满足一定的条件,很多学习者对等价无穷小代换的使用条件认识不深,经常错用等价无穷小代换。针对这个问题,本文通...等价无穷小是极限理论的一个重要组成部分,选取合适的等价无穷小代换,可以极大地简化极限问题的处理。使用等价无穷小需要满足一定的条件,很多学习者对等价无穷小代换的使用条件认识不深,经常错用等价无穷小代换。针对这个问题,本文通过等价无穷小的本质对等价无穷小代换的使用条件进行解析,使学习者能够充分认识并理解等价无穷小的使用条件,理解和掌握等价无穷小的应用,对于深入学习和应用微积分知识具有重要的作用。Equivalent infinitesimal is an important component of limit theory, and selecting appropriate equivalent infinitesimal substitutions can greatly simplify the handling of limit problems. The use of equivalent infinitesimal substitution requires certain conditions to be met, and many learners have a limited understanding of the conditions for using equivalent infinitesimal substitution and often misuse it. In response to this issue, this article analyzes the usage conditions of equivalent infinitesimal substitution through the essence of equivalent infinitesimal, enabling learners to fully understand and comprehend the usage conditions of equivalent infinitesimal, understand and master the applications of equivalent infinitesimal, which plays an important role in in-depth learning and application of micro integration knowledge.展开更多
文摘等价无穷小是极限理论的一个重要组成部分,选取合适的等价无穷小代换,可以极大地简化极限问题的处理。使用等价无穷小需要满足一定的条件,很多学习者对等价无穷小代换的使用条件认识不深,经常错用等价无穷小代换。针对这个问题,本文通过等价无穷小的本质对等价无穷小代换的使用条件进行解析,使学习者能够充分认识并理解等价无穷小的使用条件,理解和掌握等价无穷小的应用,对于深入学习和应用微积分知识具有重要的作用。Equivalent infinitesimal is an important component of limit theory, and selecting appropriate equivalent infinitesimal substitutions can greatly simplify the handling of limit problems. The use of equivalent infinitesimal substitution requires certain conditions to be met, and many learners have a limited understanding of the conditions for using equivalent infinitesimal substitution and often misuse it. In response to this issue, this article analyzes the usage conditions of equivalent infinitesimal substitution through the essence of equivalent infinitesimal, enabling learners to fully understand and comprehend the usage conditions of equivalent infinitesimal, understand and master the applications of equivalent infinitesimal, which plays an important role in in-depth learning and application of micro integration knowledge.