我们知道,无穷积分(积分区间是无穷区间的积分)收敛性方面的理论,几乎是和无穷级数的相应理论互相平行的。这是因为无穷积分和无穷级数有着紧密的联系:一方面,对于给定的函数f(x),有integral from n=0 to+∞(f(x)dx)=sum from n=0 to+∞...我们知道,无穷积分(积分区间是无穷区间的积分)收敛性方面的理论,几乎是和无穷级数的相应理论互相平行的。这是因为无穷积分和无穷级数有着紧密的联系:一方面,对于给定的函数f(x),有integral from n=0 to+∞(f(x)dx)=sum from n=0 to+∞[integral from n=n to n+1(f(x)dx)]=sum fron n=0 to+∞(u_n).(1)其中u_n=integral from n=n to n+1(f(x)dx)(n=0,1,2,…);另一方面,给定级数sum from n=0 to+∞(u_n),我们可以造一个国数f(x)=u_n,n≤x【n+1。展开更多
文摘我们知道,无穷积分(积分区间是无穷区间的积分)收敛性方面的理论,几乎是和无穷级数的相应理论互相平行的。这是因为无穷积分和无穷级数有着紧密的联系:一方面,对于给定的函数f(x),有integral from n=0 to+∞(f(x)dx)=sum from n=0 to+∞[integral from n=n to n+1(f(x)dx)]=sum fron n=0 to+∞(u_n).(1)其中u_n=integral from n=n to n+1(f(x)dx)(n=0,1,2,…);另一方面,给定级数sum from n=0 to+∞(u_n),我们可以造一个国数f(x)=u_n,n≤x【n+1。