该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C...该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)).展开更多
文摘该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)).