期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于神经网络的公路边坡稳定性实时判断
1
作者
王树威
陈艳艳
+2 位作者
陈宁
赖见辉
吴克寒
《交通信息与安全》
2013年第2期104-108,共5页
为了实现对非粘性土公路边坡的稳定性实时预警,采用神经网络方法建立了公路边坡稳定性安全系数Fs和变形值的关系模型,该方法克服了Fs不能实时获取的弊端,由实时测量的变形值计算出Fs,并通过Fs实现无粘性土公路边坡稳定性的实时预警,避...
为了实现对非粘性土公路边坡的稳定性实时预警,采用神经网络方法建立了公路边坡稳定性安全系数Fs和变形值的关系模型,该方法克服了Fs不能实时获取的弊端,由实时测量的变形值计算出Fs,并通过Fs实现无粘性土公路边坡稳定性的实时预警,避免了传统实时预警方法中需要根据经验设定各种变形值阈值的问题。对某无粘性土公路边坡的实验研究表明,神经网络模型计算精度优于其他经验模型,且能够满足工程实时监测的需要。
展开更多
关键词
交通工程
无粘性土公路边坡
稳定性安全系数Fs
变形值
神经网络法
下载PDF
职称材料
题名
基于神经网络的公路边坡稳定性实时判断
1
作者
王树威
陈艳艳
陈宁
赖见辉
吴克寒
机构
北京工业大学交通工程重点实验室
出处
《交通信息与安全》
2013年第2期104-108,共5页
基金
交通运输部科技项目(批准号:2012364223300)资助
文摘
为了实现对非粘性土公路边坡的稳定性实时预警,采用神经网络方法建立了公路边坡稳定性安全系数Fs和变形值的关系模型,该方法克服了Fs不能实时获取的弊端,由实时测量的变形值计算出Fs,并通过Fs实现无粘性土公路边坡稳定性的实时预警,避免了传统实时预警方法中需要根据经验设定各种变形值阈值的问题。对某无粘性土公路边坡的实验研究表明,神经网络模型计算精度优于其他经验模型,且能够满足工程实时监测的需要。
关键词
交通工程
无粘性土公路边坡
稳定性安全系数Fs
变形值
神经网络法
Keywords
traffic engineering
cohesionless soil roadside bank
safety factor of stability Fs
deformation value
artificial neural network(ANN)
分类号
U417 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于神经网络的公路边坡稳定性实时判断
王树威
陈艳艳
陈宁
赖见辉
吴克寒
《交通信息与安全》
2013
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部