期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
四元数矩阵方程的二次特征值的最佳逼近问题
1
作者 吴恒飞 《新乡学院学报》 2021年第6期7-11,共5页
研究了四元数矩阵方程的二次特征值的最佳逼近问题,通过四元数矩阵的Kronecker数值积、奇异值分解和矩阵分块将矩阵方程转化为复数域上的无约束方程。给出了满足最佳逼近的判别条件,讨论了任意给定矩阵的最佳逼近解,通过实验验证了结论... 研究了四元数矩阵方程的二次特征值的最佳逼近问题,通过四元数矩阵的Kronecker数值积、奇异值分解和矩阵分块将矩阵方程转化为复数域上的无约束方程。给出了满足最佳逼近的判别条件,讨论了任意给定矩阵的最佳逼近解,通过实验验证了结论的正确性。 展开更多
关键词 四元数矩阵方程 二次特征值 逼近问题 数值积 无约束方程 最佳逼近解
下载PDF
A NEW SOLUTION MODEL OF NONLINEAR DYNAMIC LEAST SQUARE ADJUSTMENT
2
作者 陶华学 郭金运 《Journal of Coal Science & Engineering(China)》 2000年第2期47-51,共5页
The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm m... The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment. 展开更多
关键词 nonlinear least square dynamic adjustment non derivative analytic method
全文增补中
A New Huang Class and Its Properties for Unconstrained Optimization Problems 被引量:1
3
作者 韦增欣 李桥兴 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第1期64-71,共8页
This paper presents a new class of quasi-Newton methods for solving unconstrained minimization problems. The methods can be regarded as a generalization of Huang class of quasi-Newton methods. We prove that the direct... This paper presents a new class of quasi-Newton methods for solving unconstrained minimization problems. The methods can be regarded as a generalization of Huang class of quasi-Newton methods. We prove that the directions and the iterations generated by the methods of the new class depend only on the parameter p if the exact line searches are made in each steps. 展开更多
关键词 unconstrained optimization quasi-Newton equation quasi-Newton method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部