The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clust...The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.展开更多
When senors transmit their data to the sink via multi-hop communication, the sensors closer to the sink are burdened with heavy relay traffic and tend to die early. On the contrary, if all sensors transmit datas to th...When senors transmit their data to the sink via multi-hop communication, the sensors closer to the sink are burdened with heavy relay traffic and tend to die early. On the contrary, if all sensors transmit datas to the sink via single-hop communication, the sensors further from the sink will die much more quickly than those closer to the sink. In this paper, we first develop an analytical model to derive the optimal cluster radius. Then we propose a mixed communication method on grid-based where the sensors can transmit data to the sink in either single-hop or multi-hop. Finally, we conduct extensive experiments and show that our method outperforms LEACH and HEED in terms of network lifetime by balancing energy consumption.展开更多
文摘The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.
文摘When senors transmit their data to the sink via multi-hop communication, the sensors closer to the sink are burdened with heavy relay traffic and tend to die early. On the contrary, if all sensors transmit datas to the sink via single-hop communication, the sensors further from the sink will die much more quickly than those closer to the sink. In this paper, we first develop an analytical model to derive the optimal cluster radius. Then we propose a mixed communication method on grid-based where the sensors can transmit data to the sink in either single-hop or multi-hop. Finally, we conduct extensive experiments and show that our method outperforms LEACH and HEED in terms of network lifetime by balancing energy consumption.