Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case wh...Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.展开更多
This paper investigates channel allocation and cognitive radio networks. The color-sensitive graph power control schemes in OFDM-based multi-hop coloring (CSGC) model is viewed as an efficient solution to the spectr...This paper investigates channel allocation and cognitive radio networks. The color-sensitive graph power control schemes in OFDM-based multi-hop coloring (CSGC) model is viewed as an efficient solution to the spectrum assignment problem. The model is extended to combine with the power con- trol strategy to avoid interference among secondary users and adapt dynamic topology. The optimiza- tion problem is formulated encompassing the channel allocation and power control with the interfer- ence constrained below a tolerable limit. Meanwhile, the proposed resource allocation scheme takes the fairness of secondary users into account in obtaining the solution of optimization. Numerical re- suits show that the proposed strategy outperforms the existing spectrum assignment algorithms on the performance of both the network throughput and minimum route bandwidth of all routes, as well as the number of connected multi-hop routes which implies the fairness among secondary users.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.
基金Supported by the National Natural Science Foundation of China(No.61461006)the Guangxi Province Natural Science Foundation(No.2013GXNSFBA19271)
文摘This paper investigates channel allocation and cognitive radio networks. The color-sensitive graph power control schemes in OFDM-based multi-hop coloring (CSGC) model is viewed as an efficient solution to the spectrum assignment problem. The model is extended to combine with the power con- trol strategy to avoid interference among secondary users and adapt dynamic topology. The optimiza- tion problem is formulated encompassing the channel allocation and power control with the interfer- ence constrained below a tolerable limit. Meanwhile, the proposed resource allocation scheme takes the fairness of secondary users into account in obtaining the solution of optimization. Numerical re- suits show that the proposed strategy outperforms the existing spectrum assignment algorithms on the performance of both the network throughput and minimum route bandwidth of all routes, as well as the number of connected multi-hop routes which implies the fairness among secondary users.