如何在协作认知网络中有效地实现主要用户和认知用户的频谱共享,即如何在众多认知用户中选择合适的认知中继集是一个基本问题。通过确定并优化主要用户和认知用户效用函数来解决该问题,因采用了纳什均衡理论,故称之为基于博弈论的多中...如何在协作认知网络中有效地实现主要用户和认知用户的频谱共享,即如何在众多认知用户中选择合适的认知中继集是一个基本问题。通过确定并优化主要用户和认知用户效用函数来解决该问题,因采用了纳什均衡理论,故称之为基于博弈论的多中继选择算法(multiple relay selection based on game theory,GTMRS)。在任一认知中继集合中,认知用户之间能够形成非合作功率的博弈模型,可基于纳什均衡得到认知用户的优化协作功率分配算法。在寻找一组确定的中继集合来实现主要用户效用的最大化过程中,引入了修改的信道调和平均数因子,其目的是移除信噪比较小的中继节点,以最大化系统的信噪比。仿真结果显示,该算法能够使更多的认知用户接入到授权频谱中,同时使得主要用户获得更大的效用以及传输速率。因此,基于博弈的多中继选择算法能够有效选择合适的认知中继,并获得主要用户和认知用户在效用上的最优化。展开更多
针对水下传感器网络通信过程中能量效率低、误码率高等问题,提出一种基于优先级服务质量(Quality of Service,QoS)选择策略的水下网络中继算法(PQSS)。算法首先采用有限状态马尔科夫链来建立源节点和中继节点之间的无线信道模型,并得到...针对水下传感器网络通信过程中能量效率低、误码率高等问题,提出一种基于优先级服务质量(Quality of Service,QoS)选择策略的水下网络中继算法(PQSS)。算法首先采用有限状态马尔科夫链来建立源节点和中继节点之间的无线信道模型,并得到中继节点信噪比的状态转移概率矩阵。接着提出链路QoS函数,该函数考虑了传输能耗、误码率和数据速率作为链路QoS的评价度量,通过各度量并结合状态转移概率的计算来求出中继节点的链路QoS值范围,从而选择链路QoS值更大的中继节点来作为最佳的下一跳节点。最后仿真结果表明,上述算法相比基于分簇的水下传感器网络覆盖保持路由算法和基于洪泛的逐层能量高效路由协议,能量效率分别提高了21.4%和13.1%,网络平均生命周期分别提高了13.4%和7.6%。展开更多
Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overh...Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overhead as well as maintaining a certain level of sens- ing performance. However, in existing hierar- chically cooperative spectrum sensing algo- rithms, the robustness problem of the system is seldom considered. In this paper, we pro- pose a reputation-based hierarchically coop- erative spectrum sensing scheme in Cognitive Radio Networks (CRNs). Before spectrum sensing, clusters are grouped based on the location correlation coefficients of Secondary Users (SUs). In the proposed scheme, there are two levels of cooperation, the first one is performed within a cluster and the second one is carried out among clusters. With the reputa- tion mechanism and modified MAJORITY rule in the second level cooperation, the pro- posed scheme can not only relieve the influ- ence of the shadowing, but also eliminate the impact of the PU emulation attack on a rela- tively large scale. Simulation results show that, in the scenarios with deep-shadowing or mul- tiple attacked SUs, our proposed scheme ach- ieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.展开更多
Cooperation allows wireless network users to benefit from various gains such as an in- crease in the achieved rate or an improvement in the bit error rate. In the paper, we propose a distributed Hierarchical Game (HG...Cooperation allows wireless network users to benefit from various gains such as an in- crease in the achieved rate or an improvement in the bit error rate. In the paper, we propose a distributed Hierarchical Game (HG) theoretic framework over multi-user cooperative communication networks to stimulate cooperation and improve the network performance. First, we study a two- user decision making game in the OFDMA based subscriber cooperative relaying network, in which subscribers transmit their own data in the first phase, while helping to retransmit their partner's or choosing to freeride in the second phase. Instead of consulting to a global optimal solution, we decouple the cooperation resource allocation into two level subproblems: a user level Nash game for distributed cooperation decision and a Base Station (BS) level coalition game for centralized resource allocation. In the proposed HG algorithm, where mutual cooperation is preferred and total payoff is transferable, we prove it converges to a unique optimal equilibrium and resolve the subcarrier as-signment and power allocation among the couples. Besides, we discuss the existence of the publishing and rewarding coefficients in order to encourage cooperation. Then, we extend the HG to multi-user cases by coupling among subscribers according to the location information. The simulation results show that the proposed scheme with the distributed HG game achieves a well tradeoff between fairness and efficiency by improving the transmission efficiency of adverse users and outperforms those employing centralized schemes.展开更多
This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity...This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.展开更多
In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditiona...In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditional time spectrum sensing, the SU cannot detect the PU's presence during its transmission, thus increasing interference to the PN. In this work, a novel weighed cooperative bandwidth spectrum sensing method is proposed, which allows multiple SUs to use part of the bandwidth to perform cooperative spectrum sensing throughout the whole frame in order to detect the PU's reappearance in time. The SU's spectrum efficiency is maximized by jointly optimizing sensing bandwidth proportion, number of cooperative SUs and detection probability, subject to the constraints on the SU's interference and the false alarm probability. Simulation results show significant decrease on the interference and improvement on the spectrum efficiency using the proposed weighed cooperative bandwidth spectrum sensing method.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource ...Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.展开更多
A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-base...A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.展开更多
文摘如何在协作认知网络中有效地实现主要用户和认知用户的频谱共享,即如何在众多认知用户中选择合适的认知中继集是一个基本问题。通过确定并优化主要用户和认知用户效用函数来解决该问题,因采用了纳什均衡理论,故称之为基于博弈论的多中继选择算法(multiple relay selection based on game theory,GTMRS)。在任一认知中继集合中,认知用户之间能够形成非合作功率的博弈模型,可基于纳什均衡得到认知用户的优化协作功率分配算法。在寻找一组确定的中继集合来实现主要用户效用的最大化过程中,引入了修改的信道调和平均数因子,其目的是移除信噪比较小的中继节点,以最大化系统的信噪比。仿真结果显示,该算法能够使更多的认知用户接入到授权频谱中,同时使得主要用户获得更大的效用以及传输速率。因此,基于博弈的多中继选择算法能够有效选择合适的认知中继,并获得主要用户和认知用户在效用上的最优化。
文摘针对水下传感器网络通信过程中能量效率低、误码率高等问题,提出一种基于优先级服务质量(Quality of Service,QoS)选择策略的水下网络中继算法(PQSS)。算法首先采用有限状态马尔科夫链来建立源节点和中继节点之间的无线信道模型,并得到中继节点信噪比的状态转移概率矩阵。接着提出链路QoS函数,该函数考虑了传输能耗、误码率和数据速率作为链路QoS的评价度量,通过各度量并结合状态转移概率的计算来求出中继节点的链路QoS值范围,从而选择链路QoS值更大的中继节点来作为最佳的下一跳节点。最后仿真结果表明,上述算法相比基于分簇的水下传感器网络覆盖保持路由算法和基于洪泛的逐层能量高效路由协议,能量效率分别提高了21.4%和13.1%,网络平均生命周期分别提高了13.4%和7.6%。
基金ACKNOWLEDGEMENT This work was partially supported by the Na- tional Natural Science Foundation of China under Grant No. 61071127 and the Science and Technology Department of Zhejiang Pro- vince under Grants No. 2012C01036-1, No. 2011R10035.
文摘Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overhead as well as maintaining a certain level of sens- ing performance. However, in existing hierar- chically cooperative spectrum sensing algo- rithms, the robustness problem of the system is seldom considered. In this paper, we pro- pose a reputation-based hierarchically coop- erative spectrum sensing scheme in Cognitive Radio Networks (CRNs). Before spectrum sensing, clusters are grouped based on the location correlation coefficients of Secondary Users (SUs). In the proposed scheme, there are two levels of cooperation, the first one is performed within a cluster and the second one is carried out among clusters. With the reputa- tion mechanism and modified MAJORITY rule in the second level cooperation, the pro- posed scheme can not only relieve the influ- ence of the shadowing, but also eliminate the impact of the PU emulation attack on a rela- tively large scale. Simulation results show that, in the scenarios with deep-shadowing or mul- tiple attacked SUs, our proposed scheme ach- ieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.
基金Acknowledgements This work is supported by the National Natural Science Foundation of China under Grant No. 60971083, National High-Tech Research and Development Plan of China under Grant No. 2009AA01Z206 and National International Science and Technology Cooperation Project under Granted NO.2008DFA12090.
文摘Cooperation allows wireless network users to benefit from various gains such as an in- crease in the achieved rate or an improvement in the bit error rate. In the paper, we propose a distributed Hierarchical Game (HG) theoretic framework over multi-user cooperative communication networks to stimulate cooperation and improve the network performance. First, we study a two- user decision making game in the OFDMA based subscriber cooperative relaying network, in which subscribers transmit their own data in the first phase, while helping to retransmit their partner's or choosing to freeride in the second phase. Instead of consulting to a global optimal solution, we decouple the cooperation resource allocation into two level subproblems: a user level Nash game for distributed cooperation decision and a Base Station (BS) level coalition game for centralized resource allocation. In the proposed HG algorithm, where mutual cooperation is preferred and total payoff is transferable, we prove it converges to a unique optimal equilibrium and resolve the subcarrier as-signment and power allocation among the couples. Besides, we discuss the existence of the publishing and rewarding coefficients in order to encourage cooperation. Then, we extend the HG to multi-user cases by coupling among subscribers according to the location information. The simulation results show that the proposed scheme with the distributed HG game achieves a well tradeoff between fairness and efficiency by improving the transmission efficiency of adverse users and outperforms those employing centralized schemes.
基金Supported by 973 Program (2007CB310607)National Natural Science Foundation of China (60772062)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200813)
文摘This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.
基金Project(61471194)supported by the National Natural Science Foundation of ChinaProject(BK20140828)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NS2015088,DUT16RC(3)045)supported by the Fundamental Research Funds for the Central Universities,China
文摘In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditional time spectrum sensing, the SU cannot detect the PU's presence during its transmission, thus increasing interference to the PN. In this work, a novel weighed cooperative bandwidth spectrum sensing method is proposed, which allows multiple SUs to use part of the bandwidth to perform cooperative spectrum sensing throughout the whole frame in order to detect the PU's reappearance in time. The SU's spectrum efficiency is maximized by jointly optimizing sensing bandwidth proportion, number of cooperative SUs and detection probability, subject to the constraints on the SU's interference and the false alarm probability. Simulation results show significant decrease on the interference and improvement on the spectrum efficiency using the proposed weighed cooperative bandwidth spectrum sensing method.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.
基金supported by National Natural Science Foundation of China (Grant No. 61501048) National High-tech R&D Program of China (863 Program) (Grant No. 2013AA102301)+1 种基金The Fundamental Research Funds for the Central Universities (Grant No. 2017RC12) China Postdoctoral Science Foundation funded project (Grant No.2016T90067, 2015M570060)
文摘Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.
基金The National Natural Science Foundation of China(No.61771126,61372104)the Science and Technology Project of State Grid Corporation of China(o.SGRIXTKJ[2015] 349)
文摘A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.