We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some...We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.展开更多
基金supported by the National Natural Science Foundation of China (No. 60832008)the Research Grants Council Joint Research Scheme National Natural Science Foundation of China (No. 60731160013)
文摘We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.