针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,...针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。展开更多
文摘针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。