This paper presents the multi-step Q-learning(MQL)algorithm as an autonomic approach to thejoint radio resource management(JRRM)among heterogeneous radio access technologies(RATs)in theB3G environment.Through the'...This paper presents the multi-step Q-learning(MQL)algorithm as an autonomic approach to thejoint radio resource management(JRRM)among heterogeneous radio access technologies(RATs)in theB3G environment.Through the'trial-and-error'on-line learning process,the JRRM controller can con-verge to the optimized admission control policy.The JRRM controller learns to give the best allocation foreach session in terms of both the access RAT and the service bandwidth.Simulation results show that theproposed algorithm realizes the autonomy of JRRM and achieves well trade-off between the spectrum utilityand the blocking probability comparing to the load-balancing algorithm and the utility-maximizing algo-rithm.Besides,the proposed algorithm has better online performances and convergence speed than theone-step Q-learning(QL)algorithm.Therefore,the user statisfaction degree could be improved also.展开更多
Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequen...Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.展开更多
In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street la...In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.展开更多
基金the National Natural Science Foundation of China(No.60632030)the National High Technology Research and Development Program of China(No.2006AA01Z276)
文摘This paper presents the multi-step Q-learning(MQL)algorithm as an autonomic approach to thejoint radio resource management(JRRM)among heterogeneous radio access technologies(RATs)in theB3G environment.Through the'trial-and-error'on-line learning process,the JRRM controller can con-verge to the optimized admission control policy.The JRRM controller learns to give the best allocation foreach session in terms of both the access RAT and the service bandwidth.Simulation results show that theproposed algorithm realizes the autonomy of JRRM and achieves well trade-off between the spectrum utilityand the blocking probability comparing to the load-balancing algorithm and the utility-maximizing algo-rithm.Besides,the proposed algorithm has better online performances and convergence speed than theone-step Q-learning(QL)algorithm.Therefore,the user statisfaction degree could be improved also.
基金Project(2009BADB9B09)supported by the National Key Technologies R&D Program of China
文摘Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.
文摘In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.