In Wireless Sensor Networks(WSNs),polling can obviously improve the throughput and decrease average access delay by allocating bandwidth efficiently and reasonably.In this paper,a Dynamic Polling Media Access Control ...In Wireless Sensor Networks(WSNs),polling can obviously improve the throughput and decrease average access delay by allocating bandwidth efficiently and reasonably.In this paper,a Dynamic Polling Media Access Control (DPMAC) scheme designed according to WSNs' features is proposed.DPMAC is a priority based access control protocol with the characteristics that its polling table is dynamically refreshed depending on whether the sensor node is active and that the bandwidth is dynamically allocated according to the traffic types.The access priorities are determined by the emergency levels of events and the scheduler proposed in our MAC is preemptive based on the deadline of the events.Simulation results show that DPMAC can efficiently utilize bandwidth and decrease average access delay and response time for emergency events with different access priorities in WSNs.展开更多
Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective ...Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective and reliable to guarantee successful packet delivery.Based on the data delivery structure,most of the existing multicast routing protocols can be classified into two folders:tree-based and mesh-based.We observe that tree-based ones have high forwarding efficiency and low consumptions of bandwidth,and they may have poor robustness because only one link exists between two nodes.As a treebased multicast routing protocol,MAODV(Multicast Ad hoc On-demand Vector) shows an excellent performance in lightweight ad hoc networks.As the load of network increases,QoS(Quality of Service) is degraded obviously.In this paper,we analyze the impact of network load on MAODV protocol,and propose an optimized protocol MAODV-BB(Multicast Ad hoc On-demand Vector with Backup Branches),which improves robustness of the MAODV protocol by combining advantages of the tree structure and the mesh structure.It not only can update shorter tree branches but also construct a multicast tree with backup branches.Mathematical analysis and simulation results both demonstrate that the MAODV-BB protocol improves the network performance over conventional MAODV in heavy load ad hoc networks.展开更多
This paper addresses the problem of joint optimization of subchannel selection and spectrum sensing time for multiband cognitive radio networks under the sensing capability constrains. In particular, we construct a mu...This paper addresses the problem of joint optimization of subchannel selection and spectrum sensing time for multiband cognitive radio networks under the sensing capability constrains. In particular, we construct a multiband spectrum sensing framework, and derive the probabilities of detection and false alarm taking the different subchannel gain into account. Furthermore, we formulate the multi- band sensing as a two-parameter optimization prob- lem under the sensing capability constrains and guaranteeing the QoS of the secondary user. Moreover, we develop a semi-analytical optimization scheme to achieve the optimal solution.展开更多
In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple ...In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple users and one fusion center. The frame structure of cooperative spectrum sensing was divided into multiple transmission time slots and one sensing time slot consisting of local energy detection and cooperative overhead. An optimization problem was formulated to maximize the throughput of CR network, subject to the constraints of both false alarm probability and detection probability. A joint optimization algorithm of sensing time and number of users was proposed to solve this optimization problem with low time complexity. An allocation algorithm of cooperative users was proposed to preferentially allocate the users to the channels with high utilization probability. The simulation results show that the significant improvement on the throughput can be achieved through the proposed joint optimization and allocation algorithms.展开更多
Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.61172068,61003300the Key Program of NSFC Guangdong Union Foundation under Grant No.U0835004+2 种基金the National Grand Fundamental Research 973 Program of China under Grant No.A001200907the Fundamental Research Funds for the Central Universities under Grant No.K50511010003Program for New Century Excellent Talents in University under Grant No.NCET-11-0691
文摘In Wireless Sensor Networks(WSNs),polling can obviously improve the throughput and decrease average access delay by allocating bandwidth efficiently and reasonably.In this paper,a Dynamic Polling Media Access Control (DPMAC) scheme designed according to WSNs' features is proposed.DPMAC is a priority based access control protocol with the characteristics that its polling table is dynamically refreshed depending on whether the sensor node is active and that the bandwidth is dynamically allocated according to the traffic types.The access priorities are determined by the emergency levels of events and the scheduler proposed in our MAC is preemptive based on the deadline of the events.Simulation results show that DPMAC can efficiently utilize bandwidth and decrease average access delay and response time for emergency events with different access priorities in WSNs.
基金This work is supported by the NSFC (National Natural Science Foundation of China) No. 61371068 and No. 61172130, the National 863 program No.2011AA11A102-04-02 and Shenzhen Technology Research and Development Program No. CXZZ20120830100839333.
文摘Mobile Ad hoc Networks(MANETs) play an important role in emergency communications where network needs to be constructed temporarily and quickly.Since the nodes move randomly,routing protocols must be highly effective and reliable to guarantee successful packet delivery.Based on the data delivery structure,most of the existing multicast routing protocols can be classified into two folders:tree-based and mesh-based.We observe that tree-based ones have high forwarding efficiency and low consumptions of bandwidth,and they may have poor robustness because only one link exists between two nodes.As a treebased multicast routing protocol,MAODV(Multicast Ad hoc On-demand Vector) shows an excellent performance in lightweight ad hoc networks.As the load of network increases,QoS(Quality of Service) is degraded obviously.In this paper,we analyze the impact of network load on MAODV protocol,and propose an optimized protocol MAODV-BB(Multicast Ad hoc On-demand Vector with Backup Branches),which improves robustness of the MAODV protocol by combining advantages of the tree structure and the mesh structure.It not only can update shorter tree branches but also construct a multicast tree with backup branches.Mathematical analysis and simulation results both demonstrate that the MAODV-BB protocol improves the network performance over conventional MAODV in heavy load ad hoc networks.
文摘This paper addresses the problem of joint optimization of subchannel selection and spectrum sensing time for multiband cognitive radio networks under the sensing capability constrains. In particular, we construct a multiband spectrum sensing framework, and derive the probabilities of detection and false alarm taking the different subchannel gain into account. Furthermore, we formulate the multi- band sensing as a two-parameter optimization prob- lem under the sensing capability constrains and guaranteeing the QoS of the secondary user. Moreover, we develop a semi-analytical optimization scheme to achieve the optimal solution.
基金Project(61471194)supported by the National Natural Science Foundation of ChinaProject(BK20140828)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple users and one fusion center. The frame structure of cooperative spectrum sensing was divided into multiple transmission time slots and one sensing time slot consisting of local energy detection and cooperative overhead. An optimization problem was formulated to maximize the throughput of CR network, subject to the constraints of both false alarm probability and detection probability. A joint optimization algorithm of sensing time and number of users was proposed to solve this optimization problem with low time complexity. An allocation algorithm of cooperative users was proposed to preferentially allocate the users to the channels with high utilization probability. The simulation results show that the significant improvement on the throughput can be achieved through the proposed joint optimization and allocation algorithms.
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.