Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio fre...Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design.展开更多
This paper describes how to use medium access control (MAC) isolation to enhance management performance in public wireless LAN (PWLAN). To comply with the IEEE 802.11 standards, a scheme to implement MAC isolation in ...This paper describes how to use medium access control (MAC) isolation to enhance management performance in public wireless LAN (PWLAN). To comply with the IEEE 802.11 standards, a scheme to implement MAC isolation in WLAN access points by re-designing the Distribution_Service component of the MAC state machine is proposed. A variable named dotl 1 Isolation is defined to determine whether the MAC level communication between wireless stations in the same BSS is permitted or not. Finally, a design solution based on MPC860 hardware and embedded Linux software for PWLAN access point is specified. The simulation results of MAC isolation for PWLAN show that the proposed scheme is feasible and effective.展开更多
Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use...Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing).展开更多
Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (...Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines.展开更多
Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety...Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.展开更多
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless ...Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless sensor networks, it is necessary to balance the whole network load. As the energy consumption is related to the situation of nodes, the distribution uniformity must be considered. In this paper, a new model is proposed to evaluate the nodes distribution uniformity by considering some parameters which include compression discrepancy, sparseness discrepancy, self discrepancy, maximum cavity radius and minimum cavity radius. The simulation results show that the presented model could be helpful for measuring the distribution uniformity of nodes scattered randomly in wireless sensor networks.展开更多
Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Str...Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.展开更多
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf...To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.展开更多
Wireless sensor nodes have the advantage of being low-cost,easily deployed and of good mobility.If deployed in an underground mine with existing underground transmission systems a wireless sensor network can improve t...Wireless sensor nodes have the advantage of being low-cost,easily deployed and of good mobility.If deployed in an underground mine with existing underground transmission systems a wireless sensor network can improve the collection of information.To get good transmission performance for 2.4 GHz wireless sensor nodes at the working face we calculated the reflection properties of electromagnetic waves from a flat metal plate.Using the cascade impedance method(CIM),we studied transmission attenuation and compared the results to actual tests.The results show that the effective transmission distance of 2.4 GHz wireless sensor nodes meets the stipulations of the ZigBee protocol.展开更多
In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving ...In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.展开更多
In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property ...In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method.展开更多
To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity ...To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.展开更多
This paper studies the relationship between mobility, navigation and localization in the context of wireless sensor networks with mobile beacons. It is observed that mobility can aid in network node localization and t...This paper studies the relationship between mobility, navigation and localization in the context of wireless sensor networks with mobile beacons. It is observed that mobility can aid in network node localization and that once localized, the network nodes can localize and track a mobile object and guide its navigation. A distributed kernel-based algorithm is proposed that enables the nodes to establish confident position estimates in the presence of ranging inaccuracies. The proposed approach features robustness with respect to range measurement inaccuracies, low complexity and distributed implementation, using only local information. Simulation validates our approach viable.展开更多
This paper presents a new graph-based single-copy routmg method m delay tolerant networks (DTN). With time goes on in the networks, a DTN connectivity graph is constituted with mobility of nodes and communication, a...This paper presents a new graph-based single-copy routmg method m delay tolerant networks (DTN). With time goes on in the networks, a DTN connectivity graph is constituted with mobility of nodes and communication, and a corresponding greedy tree is obtained using a greedy algorithm in DTN connectivity graph. While there are some bad nodes such as disabled nodes or selfish nodes in delay tolerant networks, the nodes can choose the next p^oper intermediate node to transmit the mes- sage by comparing the location of neighboring nodes in the greedy tree. The single-copy routing method is very appropriate for energy-constrained, storage-constrained and bandwidth-constrained applications such as mobile wireless DTN networks. We show that delivery ratio is increased significantly by using the graph-based single-copy routing when bad nodes exist.展开更多
Owing to the potential for intercell cochannel interference mitigation and significant spectral efficiency improvement, coordinating transmission techniques by multiple radio access points have recently attracted a lo...Owing to the potential for intercell cochannel interference mitigation and significant spectral efficiency improvement, coordinating transmission techniques by multiple radio access points have recently attracted a lot of attention. In this paper, the system structure and mathematical signal model based on clustered structure are presented for multipoint coordinating downlink transmission, the clustered supercell configurations with static/dynamic approaches are discussed, and then optimal precod- ing design is provided for an accepted level of scheduling complexity and reduced signaling over- head. Some simulation results are given to evaluate the performance of different cell-clustering approaches, and to show that a clustered supercell size of 7 is a reasonable choice for clustered coordination with the given transmit power and the reduced feedback.展开更多
The paper design hardware platform based on network node, and analyze ZigBee protocol architecture and standards of each layer; on based of ZigBee protocol stack, we design the application program of network coordinat...The paper design hardware platform based on network node, and analyze ZigBee protocol architecture and standards of each layer; on based of ZigBee protocol stack, we design the application program of network coordinator and terminal node to realize the data acquisition; design of network system has the characteristics of low cost, small volume, test results show that the mesh topology, network support, can be rapidly deployed, temperature, humidity, light intensity information of the smooth reading environment, that can be used for domestic environmental monitoring field.展开更多
From the view of practical application, this paper designs an infrared information collection nodes, the coordinator node, wireless transmission system using CC2430 microcontroller, and in detail design the infrared s...From the view of practical application, this paper designs an infrared information collection nodes, the coordinator node, wireless transmission system using CC2430 microcontroller, and in detail design the infrared sensor (temperature, heart rate, ECG / pulse) circuit diagram. This paper set up a wireless network (ZigBee protocol), sensor signal acquisition, wireless transmitting and receiving, serial communication software design of coordinator node and PC machine. Finally, we on-line debug each module of the system hardware and software. Experiments show that the network node data transmission accurate, reliable work, has basically met the design requirements.展开更多
This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth co...This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth constraints, a space-efficient packet marking scheme is first introduced. The scheme uses a Bloom filter as a compression tool so that path information can bc piggybacked by data packets. Based on the path information, LoNI then adopts a fast algorithm to detect lossy nodes. The algorithm formulates the inference problem as a weighted set-cover problem and solves it using a greedy approach with low complexity. Simulations show that LoNI can locate about 80% of lossy nodes when lossy nodes are rare in the network. Furthermore, LoNI performs better for the lossy nodes near the sink or with higher loss rates.展开更多
基金The National High Technology Research and Deve-lopment Program of China (863Program) (No.2003AA143040).
文摘Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design.
文摘This paper describes how to use medium access control (MAC) isolation to enhance management performance in public wireless LAN (PWLAN). To comply with the IEEE 802.11 standards, a scheme to implement MAC isolation in WLAN access points by re-designing the Distribution_Service component of the MAC state machine is proposed. A variable named dotl 1 Isolation is defined to determine whether the MAC level communication between wireless stations in the same BSS is permitted or not. Finally, a design solution based on MPC860 hardware and embedded Linux software for PWLAN access point is specified. The simulation results of MAC isolation for PWLAN show that the proposed scheme is feasible and effective.
文摘Wireless Ad Hoc Sensor Networks (WSNs) have received considerable academia research attention at present. The energy-constraint sensor nodes in WSNs operate on limited batteries, so it is a very important issue to use energy efficiently and reduce power consumption. To maximize the network lifetime, it is essential to prolong each individual node’s lifetime through minimizing the transmission energy consumption, so that many minimum energy routing schemes for traditional mobile ad hoc network have been developed for this reason. This paper presents a novel minimum energy routing algorithm named Load-Balanced Minimum Energy Routing (LBMER) for WSNs considering both sensor nodes’ energy consumption status and the sensor nodes’ hierarchical congestion levels, which uses mixture of energy balance and traffic balance to solve the problem of “hot spots” of WSNs and avoid the situation of “hot spots” sensor nodes using their energy at much higher rate and die much faster than the other nodes. The path router established by LBMER will not be very congested and the traffic will be distributed evenly in the WSNs. Simulation results verified that the LBMER performance is better than that of Min-Hop routing and the existing minimum energy routing scheme MTPR (Total Transmission Power Routing).
基金Project 20070411065 supported by the China Postdoctoral Science Foundation
文摘Wireless sensor networks (WSNs) are very important for monitoring underground mine safety. Sensor node deployment affects the performances of WSNs. In our study, a chain-type wireless underground mine sensor network (CWUMSN) is first pre- sented. A CWUMSN can monitor the environment and locate miners in underground mines. The lowest density deployment strate- gies of cluster head nodes are discussed theoretically. We prove that the lifetime of CWUMSN with a non-uniform deployment strategy is longer than with a uniform deployment strategy. Secondly, we present the algorithm of non-uniform lowest density de- ployment of cluster head nodes. Next, we propose a dynamic choice algorithm of cluster head nodes for CWUMSN which can im- prove the adaptability of networks. Our experiments of CWUMSN with both non-uniform lowest density and uniform lowest den- sity deployments are simulated. The results show that the lifetime of CWUMSN with non-uniform lowest density deployment is almost 2.5 times as long as that of the uniform lowest density deployment. This work provides a new deployment strategy for wire- less underground mine sensor networks and then effectively promotes the application of wireless sensor networks to underground mines.
基金Projects 20070411065 supported by the China Postdoctoral Science Foundation0801028B by the Jiangsu Postdoctoral Science Research Foundation
文摘Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
基金Supported by the National Natural Science Foundation of China (No. 60572035)
文摘Wireless sensor networks have several special characteristics which make against the network coverage, such as shortage of energy, difficulty with energy supply and so on. In order to prolong the lifetime of wireless sensor networks, it is necessary to balance the whole network load. As the energy consumption is related to the situation of nodes, the distribution uniformity must be considered. In this paper, a new model is proposed to evaluate the nodes distribution uniformity by considering some parameters which include compression discrepancy, sparseness discrepancy, self discrepancy, maximum cavity radius and minimum cavity radius. The simulation results show that the presented model could be helpful for measuring the distribution uniformity of nodes scattered randomly in wireless sensor networks.
文摘Failure of one or multiple critical nodes may partition wireless sensor networks into disjoint segments, and thus brings negative effect on the applications. We propose DCRS, a Distributed Connectivity Restoration Strategy to tolerate the failure of one critical node. Because of the energy restriction of sensor nodes, the energy overhead of the recovery process should be minimized to extend the lifetime of the network. To achieve it, we first design a novel algorithm to identify 2-critical nodes only relying on the positional information of 1-hop neighbors and some 2-hop neighbors, and then we present the criteria to select an appropriate backup for each critical node. Finally, we improve the cascaded node movement algorithm by determining whether a node can move to another non-adjacent node directly or not to reduce the number of nodes moved. The effectiveness of DCRS is validated through extensive simulation experiments.
基金supported by the National Basic Research Program of China(2007CB310703)the High Technical Research and Development Program of China(2008AA01Z201)+1 种基金the National Natural Science Foundlation of China(60821001,60802035,60973108)Chinese Universities Science Fund(BUPT2009RC0504)
文摘To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.
基金Project 60774090 supported by the National Natural Science Foundation of China
文摘Wireless sensor nodes have the advantage of being low-cost,easily deployed and of good mobility.If deployed in an underground mine with existing underground transmission systems a wireless sensor network can improve the collection of information.To get good transmission performance for 2.4 GHz wireless sensor nodes at the working face we calculated the reflection properties of electromagnetic waves from a flat metal plate.Using the cascade impedance method(CIM),we studied transmission attenuation and compared the results to actual tests.The results show that the effective transmission distance of 2.4 GHz wireless sensor nodes meets the stipulations of the ZigBee protocol.
基金Project(60673164)supported by the National Natural Science Foundation of ChinaProject(20060533057)supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.
基金supported by the National Basic Research Program of China(No.2011CB302702)the NationalNatural Science Foundation of China(Nos.60803140,60970133,61070187)
文摘In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method.
基金Project(2007AA01Z224) supported by National High-Tech Research and Development Program of China
文摘To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.
文摘This paper studies the relationship between mobility, navigation and localization in the context of wireless sensor networks with mobile beacons. It is observed that mobility can aid in network node localization and that once localized, the network nodes can localize and track a mobile object and guide its navigation. A distributed kernel-based algorithm is proposed that enables the nodes to establish confident position estimates in the presence of ranging inaccuracies. The proposed approach features robustness with respect to range measurement inaccuracies, low complexity and distributed implementation, using only local information. Simulation validates our approach viable.
基金Supported by the National High Technology Research and Development Programme of China (No. 2007AA01Z429, 2007AA01Z405 ) and the National Natural Science Foundation of China (No. 60633020, 60702059, 60872041 ).
文摘This paper presents a new graph-based single-copy routmg method m delay tolerant networks (DTN). With time goes on in the networks, a DTN connectivity graph is constituted with mobility of nodes and communication, and a corresponding greedy tree is obtained using a greedy algorithm in DTN connectivity graph. While there are some bad nodes such as disabled nodes or selfish nodes in delay tolerant networks, the nodes can choose the next p^oper intermediate node to transmit the mes- sage by comparing the location of neighboring nodes in the greedy tree. The single-copy routing method is very appropriate for energy-constrained, storage-constrained and bandwidth-constrained applications such as mobile wireless DTN networks. We show that delivery ratio is increased significantly by using the graph-based single-copy routing when bad nodes exist.
文摘Owing to the potential for intercell cochannel interference mitigation and significant spectral efficiency improvement, coordinating transmission techniques by multiple radio access points have recently attracted a lot of attention. In this paper, the system structure and mathematical signal model based on clustered structure are presented for multipoint coordinating downlink transmission, the clustered supercell configurations with static/dynamic approaches are discussed, and then optimal precod- ing design is provided for an accepted level of scheduling complexity and reduced signaling over- head. Some simulation results are given to evaluate the performance of different cell-clustering approaches, and to show that a clustered supercell size of 7 is a reasonable choice for clustered coordination with the given transmit power and the reduced feedback.
文摘The paper design hardware platform based on network node, and analyze ZigBee protocol architecture and standards of each layer; on based of ZigBee protocol stack, we design the application program of network coordinator and terminal node to realize the data acquisition; design of network system has the characteristics of low cost, small volume, test results show that the mesh topology, network support, can be rapidly deployed, temperature, humidity, light intensity information of the smooth reading environment, that can be used for domestic environmental monitoring field.
文摘From the view of practical application, this paper designs an infrared information collection nodes, the coordinator node, wireless transmission system using CC2430 microcontroller, and in detail design the infrared sensor (temperature, heart rate, ECG / pulse) circuit diagram. This paper set up a wireless network (ZigBee protocol), sensor signal acquisition, wireless transmitting and receiving, serial communication software design of coordinator node and PC machine. Finally, we on-line debug each module of the system hardware and software. Experiments show that the network node data transmission accurate, reliable work, has basically met the design requirements.
文摘This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth constraints, a space-efficient packet marking scheme is first introduced. The scheme uses a Bloom filter as a compression tool so that path information can bc piggybacked by data packets. Based on the path information, LoNI then adopts a fast algorithm to detect lossy nodes. The algorithm formulates the inference problem as a weighted set-cover problem and solves it using a greedy approach with low complexity. Simulations show that LoNI can locate about 80% of lossy nodes when lossy nodes are rare in the network. Furthermore, LoNI performs better for the lossy nodes near the sink or with higher loss rates.