Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various acc...Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.展开更多
An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy ...An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.展开更多
基金funded by the University of Malaya, under Grant No.RG208-11AFR
文摘Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.
基金Supported by the National Natural Science Foundation and Civil Aviation Administration of China(No.61071105)
文摘An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.