A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupti...A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupting the primary user (PU) transmissions, the overlay model allows the secondary user (SU) to utilize opportunistically the idle sub-channels; the underlay model allows the SU to occupy the same sub-channels with PU. The proposed protocols are designed for maximizing the quality of experience (QoE) of CR users and switching dynamically between the overlay and underlay models. QoE is measured by the mean opinion score (MOS) rather than simply fulfilling the physical and medium access control (MAC) layer requirements. The simulations considering the file transfer and video stream services show that the proposed resource allocation strategy is spectrum efficient.展开更多
In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In t...In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.展开更多
The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy R...The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.展开更多
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable si...Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.展开更多
High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio acc...To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio access network(H-CRAN), as a promising network paradigm in 5G system, is a hot research topic in recent years. However, the densely deployment of RRHs in H-CRAN leads to downlink/uplink traffic asymmetry and severe inter-cell interference which could seriously impair the network throughput and resource utilization. To simultaneously solve these two problems, we proposed a dynamic resource allocation(DRA) scheme for H-CRAN in TDD mode. Firstly, we design a clustering algorithm to group the RRHs into different sets. Secondly, we adopt coordinated multipoint technology to eliminate the interference in each set. Finally, we formulate the joint frame structure, power and subcarrier selection problem as a mixed strategy noncooperative game. The simulation results are presented to validate the effectiveness of our proposed algorithm by compared with the existing work.展开更多
Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they ...Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.展开更多
Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temper...Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temperature limit of corresponding primary users was considered. Due to the constraints caused by multiple dual channels, the power allocation problem is non-convex and NP-hard. Based on geometric programming (GP), a novel and general algorithm, which turned the problem into a series of GP problems by logarithm approximation (LASGP), was proposed to efficiently solve it. Numerical results verify the efficiency and availability of the LASGP algorithm. Solutions of LASGP are provably convergent and globally optimal point can be observed as well as the channel allocation always outperforms power or timeslot allocation from simulations. Compared with schemes without any allocation, the scheme with joint channel, power and timeslot allocation significantly increases the overall end-to-end throughput by no less than 70% under same simulation conditions. This scheme can not only maximize the throughput by increasing total maximum power of relay node, but also outperform other resource allocation schemes when lower total maximum power of source and relay nodes is restricted. As the total maximum power of source node increases, the scheme with joint channel and timeslot allocation performs best in all schemes.展开更多
基金The National Natural Science Foundation of China(No.61271207,61372104)the Natural Science Foundation of Jiangsu Province(No.BK20130530)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.12KJB510002)the Programs of Senior Talent Foundation of Jiangsu University(No.11JDG130)
文摘A resource allocation protocol is presented in an orthogonal frequency division multiple access (OFDMA) cognitive radio (CR) network with a hybrid model which combines overlay and underlay models. Without disrupting the primary user (PU) transmissions, the overlay model allows the secondary user (SU) to utilize opportunistically the idle sub-channels; the underlay model allows the SU to occupy the same sub-channels with PU. The proposed protocols are designed for maximizing the quality of experience (QoE) of CR users and switching dynamically between the overlay and underlay models. QoE is measured by the mean opinion score (MOS) rather than simply fulfilling the physical and medium access control (MAC) layer requirements. The simulations considering the file transfer and video stream services show that the proposed resource allocation strategy is spectrum efficient.
基金supported by NSAF under Grant(No.U1530117)National Natural Science Foundation of China(No.61471022 and No.61201156)
文摘In modern wireless communication network, the increased consumer demands for multi-type applications and high quality services have become a prominent trend, and put considerable pressure on the wireless network. In that case, the Quality of Experience(Qo E) has received much attention and has become a key performance measurement for the application and service. In order to meet the users' expectations, the management of the resource is crucial in wireless network, especially the Qo E based resource allocation. One of the effective way for resource allocation management is accurate application identification. In this paper, we propose a novel deep learning based method for application identification. We first analyse the requirement of managing Qo E for wireless communication, and review the limitation of the traditional identification methods. After that, a deep learning based method is proposed for automatically extracting the features and identifying the type of application. The proposed method is evaluated by using the practical wireless traffic data, and the experiments verify the effectiveness of our method.
基金ACKNOWLEDGEMENT This work was supported by the National Na- tural Science Foundation of China under Gra- nts No. 61172079, 61231008, No. 61201141, No. 61301176 the National Basic Research Program of China (973 Program) under Grant No. 2009CB320404+2 种基金 the 111 Project under Gr- ant No. B08038 the National Science and Tec- hnology Major Project under Grant No. 2012- ZX03002009-003, No. 2012ZX03004002-003 and the Shaanxi Province Science and Techno- logy Research and Development Program un- der Grant No. 2011KJXX-40.
文摘The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.
基金ACKNOWLEDGEMENTS This work is supported by National Natural Science Foundation of China (No. 61171079). The authors would like to thank the editors and the anonymous reviewers for their detailed constructive comments that helped to improve the presentation of this paper.
文摘Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.
基金jointly supported by Project 61501052 and 61302080 of the National Natural Science Foundation of China
文摘To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio access network(H-CRAN), as a promising network paradigm in 5G system, is a hot research topic in recent years. However, the densely deployment of RRHs in H-CRAN leads to downlink/uplink traffic asymmetry and severe inter-cell interference which could seriously impair the network throughput and resource utilization. To simultaneously solve these two problems, we proposed a dynamic resource allocation(DRA) scheme for H-CRAN in TDD mode. Firstly, we design a clustering algorithm to group the RRHs into different sets. Secondly, we adopt coordinated multipoint technology to eliminate the interference in each set. Finally, we formulate the joint frame structure, power and subcarrier selection problem as a mixed strategy noncooperative game. The simulation results are presented to validate the effectiveness of our proposed algorithm by compared with the existing work.
基金Supported by the National Science and Technology Major Project (No.2011ZX03005-004-04)the National Grand Fundamental Research 973 Program of China (No.2011CB302-905)+2 种基金the National Natural Science Foundation of China (No.61170058,61272133,and 51274202)the Research Fund for the Doctoral Program of Higher Education of China (No.20103402110041)the Suzhou Fundamental Research Project (No.SYG201143)
文摘Resource allocation is an important problem in ubiquitous network. Most of the existing resource allocation methods considering only wireless networks are not suitable for the ubiquitous network environment, and they will harm the interest of individual users with instable resource requirements. This paper considers the multi-point video surveillance scenarios in a complex network environment with both wired and wireless networks. We introduce the utility estimated by the total costs of an individual network user. The problem is studied through mathematical modeling and we propose an improved problem-specific branch-and-cut algorithm to solve it. The algorithm follows the divide-and-conquer principle and fully considers the duality feature of network selection. The experiment is conducted by simulation through C and Lingo. And it shows that compared with a centralized random allocation scheme and a cost greed allocation scheme, the proposed scheme has better per- formance of reducing the total costs by 13.0% and 30.6% respectively for the user.
基金Project(60902092) supported by the National Natural Science Foundation of China
文摘Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temperature limit of corresponding primary users was considered. Due to the constraints caused by multiple dual channels, the power allocation problem is non-convex and NP-hard. Based on geometric programming (GP), a novel and general algorithm, which turned the problem into a series of GP problems by logarithm approximation (LASGP), was proposed to efficiently solve it. Numerical results verify the efficiency and availability of the LASGP algorithm. Solutions of LASGP are provably convergent and globally optimal point can be observed as well as the channel allocation always outperforms power or timeslot allocation from simulations. Compared with schemes without any allocation, the scheme with joint channel, power and timeslot allocation significantly increases the overall end-to-end throughput by no less than 70% under same simulation conditions. This scheme can not only maximize the throughput by increasing total maximum power of relay node, but also outperform other resource allocation schemes when lower total maximum power of source and relay nodes is restricted. As the total maximum power of source node increases, the scheme with joint channel and timeslot allocation performs best in all schemes.