In the 802.11b networks, the guarantee of an equal long-run channel access probability causes performance anomaly in a multi-rate wireless cell. Much interest has been involved in this issue and many effective mechani...In the 802.11b networks, the guarantee of an equal long-run channel access probability causes performance anomaly in a multi-rate wireless cell. Much interest has been involved in this issue and many effective mechanisms have been proposed. The usual MAC layer solutions include the initial contention window adaptation, the maximum transfer unit size adaptation and the packet bursting. In this paper, we propose a novel approach which introduces a new parameter called the transmission prob- ability pt to the legacy protocol. By adjusting pt according to the transmission rate, the proposed scheme can solve the performance anomaly problem cleanly. Throughput analysis and performance evaluation show that our scheme achieves significant im- provement in the aggregate throughput and the fairness.展开更多
To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("...To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.展开更多
As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a rel...As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.展开更多
With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a v...With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.展开更多
Packet size is restricted due to the error-prone wireless channel which drops the network energy utilization. Furthermore, the frequent packet retransmissions also lead to energy waste. In order to improve the energy ...Packet size is restricted due to the error-prone wireless channel which drops the network energy utilization. Furthermore, the frequent packet retransmissions also lead to energy waste. In order to improve the energy efficiency of wireless networks and save the energy of wireless devices, EEFA (Energy Efficiency Frame Aggregation), a frame aggregation based energy-efficient scheduling algorithm for IEEE 802.11n wireless network, is proposed. EEFA changes the size of aggregated frame dynamically according to the frame error rate, so as to ensure the data transmission and retransmissions completed during the TXOP and reduce energy consumption of channel contention. NS2 simulation results show that EEFA algorithm achieves better performance than the original frame-aggregation algorithm.展开更多
Wi-Fi indoor positioning system has received increasing interest in pervasive computing applications due to its low cost and satisfactory accuracy. To obtain high positioning accuracy based on source limited devices, ...Wi-Fi indoor positioning system has received increasing interest in pervasive computing applications due to its low cost and satisfactory accuracy. To obtain high positioning accuracy based on source limited devices, various AP selection strategies have been proposed to select the most discriminant APs for positioning. In this paper, we propose a spatially localized AP selection method based on joint location information gain. In contrast to traditional AP selection methods which measure the discriminant ability of APs independently, we consider choosing APs jointly. By considering the correlation of the discriminant ability between different APs, more accurate measure of the discriminant ability of APs can be taken. Furthermore, since the optimal AP selection solution varies spatially, we incorporate a location clustering method to localize AP selection and subsequent positioning process. Finally, support vector regression (SVR) algorithm is combined to estimate the location. Experiments are carried in a realistic Wi-Fi indoor environment. Experimental results show that, by using the localized joint AP selection strategy, the proposed positioning method achieves a high-level accuracy while reducing the energy consumption on client devices significantly.展开更多
We study the transmission capacities of two coexisting spread-spectrum wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We defi ne t...We study the transmission capacities of two coexisting spread-spectrum wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We defi ne transmission capacity as the product among the density of transmissions, the transmission rate, and the successful transmission probability. The primary (PR) network has a higher priority to access the spectrum without particular considerations for the secondary (SR) network, while the SR network limits its interference to the PR network by carefully controlling the density ofits transmitters. Considering two types of spread-spectrum transmission schemes (FH-CDMA and DS-CDMA) and the channel inversion power control mechanism, we quantify the transmission capacities for these two networks based on asymptotic analysis. Our results show that if the PR network permits a small increase ofits outage probability, the sum transmission capacities of the two networks (i.e., the overall spectrumefficiency per unit area) will be boosted significantly over that of a single network.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse app...Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc.展开更多
Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case wh...Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.展开更多
Presented is a theoretical study of double-clad Er-doped fiber power amplifier(EDFA). Two kinds of double clad fibers(DCF) with rectangular and "flower" inner clad shapes are studied, and these fibers have d...Presented is a theoretical study of double-clad Er-doped fiber power amplifier(EDFA). Two kinds of double clad fibers(DCF) with rectangular and "flower" inner clad shapes are studied, and these fibers have different coupling constants and propagation losses. We calculate the effective pump power absorption ratio along the fiber with different coupling constants from the first cladding to the doped core and with different propagation losses for the power in the inner cladding. Then the gains of the double clad Er-doped fiber amplifiers versus fiber lengths are calculated using the EDFA model based on propagation and rate equations of a homogeneous, two-level medium.展开更多
In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity,...In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators.展开更多
Abstract: In order to improve the accuracy of vertical handoff decision for radio heterogeneous network, this paper proposes an intelligent adaptive multi-criteria vertical handoff (AMVHO) decision algorithm. This ...Abstract: In order to improve the accuracy of vertical handoff decision for radio heterogeneous network, this paper proposes an intelligent adaptive multi-criteria vertical handoff (AMVHO) decision algorithm. This algo- rithm uses a fuzzy inference system (FIS) and a modified Elman neural network (MENN). The FIS adopts the crucial criteria of vertical handoff as input variables and makes handoff decision based on the defined rule base. The MENN helps to predict the number of users of the after-handoff network, which is a pivotal variable of the FIS. Simulation results show that, compared with the conventional method, the AMVHO decision algorithm a- chieves better performance in guaranteeing the quality of service (QoS) of the after-handoff communication.展开更多
This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method ...This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method based on GSM signaling has been analyzed and used. The performance of the proposed system is showed through simulations in urban and suburban environments. The accuracy for 67% mobile stations is 70 m in urban and 120 m in suburban. The accuracy, coverage and network load of positioning system are also analyzed.展开更多
In order to establish an effective wireless communication system in an underground coal-mine environment, the propagation of radio waves through a rectangular-like mine tunnel was investigated by jointly, considering ...In order to establish an effective wireless communication system in an underground coal-mine environment, the propagation of radio waves through a rectangular-like mine tunnel was investigated by jointly, considering both the dielectric constant and the reflectance of a mine tunnel. By combining free space and modified waveguide propagation models, we propose a new hybrid propagation model based on ray tracing. Simulation results have shown the effectiveness of establishing a wireless Local Area Network (LAN) in this coal-mine environment. The results of this research will be very useful as a guide in the design and development of tunnel wireless LAN systems.展开更多
Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application ...Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.展开更多
With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In ...With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.展开更多
基金Project supported by the National Mid- and Small-Scale EnterpriseTechnical Innovation Fund of China (No. 06C26225101730)the Sichuan Provincial Key Science and Technology Program, China (No. 05GG021-003-2)
文摘In the 802.11b networks, the guarantee of an equal long-run channel access probability causes performance anomaly in a multi-rate wireless cell. Much interest has been involved in this issue and many effective mechanisms have been proposed. The usual MAC layer solutions include the initial contention window adaptation, the maximum transfer unit size adaptation and the packet bursting. In this paper, we propose a novel approach which introduces a new parameter called the transmission prob- ability pt to the legacy protocol. By adjusting pt according to the transmission rate, the proposed scheme can solve the performance anomaly problem cleanly. Throughput analysis and performance evaluation show that our scheme achieves significant im- provement in the aggregate throughput and the fairness.
基金Project (No. 30470461) supported in part by the National NaturalScience Foundation of China
文摘To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.
基金supported by the ZTE Corp under Grant CON1412150018the Natural Science Foundation of China under Grant 61572389 and 61471361
文摘As one of the key technologies for the fifth generation(5G) wireless networks,device-to-device(D2D) communications allow user equipment(UE) in close proximity to communicate with each other directly.Forwarded by a relay,the relay-aided D2D(RA-D2D) communications can not only be applied to communications in much longer distance but also achieve a high quality of service(Qo S) .In this paper,we first propose a two-layer system model allowing RA-D2 D links to underlay traditional cellular uplinks.Then we maximize the energy efficiency of the RA-D2 D link while satisfying the minimum data-rate of the cellular link.The optimal transmit power at both D2 D transmitter and D2 D relay sides is obtained by transforming the nonlinear fractional programming into a nonlinear parameter programming.Simulation results show that our proposed power allocation method is more energy efficient than the existing works,and the proposed RA-D2 D scheme outperformed direct D2 D scheme when the distance between two D2 D users is longer.
基金supported by NSFC under grant No. 61322111 and No. 61401249the National Basic Research Program of China (973 Program) No. 2013CB336600+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20130002120001Chuanxin Funding, and Beijing nova program No.Z121101002512051
文摘With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.
基金the National Natural Science Foundation of China under Grant No.61363067,Guangxi Nature Science Foundation,Guangxi Ministry of Education Foundation
文摘Packet size is restricted due to the error-prone wireless channel which drops the network energy utilization. Furthermore, the frequent packet retransmissions also lead to energy waste. In order to improve the energy efficiency of wireless networks and save the energy of wireless devices, EEFA (Energy Efficiency Frame Aggregation), a frame aggregation based energy-efficient scheduling algorithm for IEEE 802.11n wireless network, is proposed. EEFA changes the size of aggregated frame dynamically according to the frame error rate, so as to ensure the data transmission and retransmissions completed during the TXOP and reduce energy consumption of channel contention. NS2 simulation results show that EEFA algorithm achieves better performance than the original frame-aggregation algorithm.
基金Sponsored by the National High Technology Research and Development Program of China (Grant No. 2008AA12Z305)the China Postdoctoral ScienceFoundation Funded Project (Grant No. 20100471057)the Heilongjiang Province Postdoctoral Science Foundation Funded Project (Grant No. LRB09-464)
文摘Wi-Fi indoor positioning system has received increasing interest in pervasive computing applications due to its low cost and satisfactory accuracy. To obtain high positioning accuracy based on source limited devices, various AP selection strategies have been proposed to select the most discriminant APs for positioning. In this paper, we propose a spatially localized AP selection method based on joint location information gain. In contrast to traditional AP selection methods which measure the discriminant ability of APs independently, we consider choosing APs jointly. By considering the correlation of the discriminant ability between different APs, more accurate measure of the discriminant ability of APs can be taken. Furthermore, since the optimal AP selection solution varies spatially, we incorporate a location clustering method to localize AP selection and subsequent positioning process. Finally, support vector regression (SVR) algorithm is combined to estimate the location. Experiments are carried in a realistic Wi-Fi indoor environment. Experimental results show that, by using the localized joint AP selection strategy, the proposed positioning method achieves a high-level accuracy while reducing the energy consumption on client devices significantly.
基金supported in part by the China 863 Program grants 2007AA10Z235, 2007AA01Z179, 2006BAJ09B05, 2008BADA0B05the NSFC grants 60972073, 60871042, 60872049, and 60971082+1 种基金the China National Great Science Specifi c Project grant 2009ZX03003-011the China 973 Program grant 2009CB320407
文摘We study the transmission capacities of two coexisting spread-spectrum wireless networks (a primary network vs. a secondary network) that operate in the same geographic region and share the same spectrum. We defi ne transmission capacity as the product among the density of transmissions, the transmission rate, and the successful transmission probability. The primary (PR) network has a higher priority to access the spectrum without particular considerations for the secondary (SR) network, while the SR network limits its interference to the PR network by carefully controlling the density ofits transmitters. Considering two types of spread-spectrum transmission schemes (FH-CDMA and DS-CDMA) and the channel inversion power control mechanism, we quantify the transmission capacities for these two networks based on asymptotic analysis. Our results show that if the PR network permits a small increase ofits outage probability, the sum transmission capacities of the two networks (i.e., the overall spectrumefficiency per unit area) will be boosted significantly over that of a single network.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
文摘Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.
基金Foundation of Beijing Jiaotong University(2005RC034)
文摘Presented is a theoretical study of double-clad Er-doped fiber power amplifier(EDFA). Two kinds of double clad fibers(DCF) with rectangular and "flower" inner clad shapes are studied, and these fibers have different coupling constants and propagation losses. We calculate the effective pump power absorption ratio along the fiber with different coupling constants from the first cladding to the doped core and with different propagation losses for the power in the inner cladding. Then the gains of the double clad Er-doped fiber amplifiers versus fiber lengths are calculated using the EDFA model based on propagation and rate equations of a homogeneous, two-level medium.
基金supported partially by the National Science and Technology Major Projects under Grants No. 2012ZX03006003-005,No. 2012ZX03003006-002,and No. 2010ZX03002-008-01
文摘In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60802030)the Foundation for Outstanding Young Scientist in Shandong Province(2007BSC01002)the Foundation of Key Program of Science and Technology in Shandong Province(2007GG2QT01007)
文摘Abstract: In order to improve the accuracy of vertical handoff decision for radio heterogeneous network, this paper proposes an intelligent adaptive multi-criteria vertical handoff (AMVHO) decision algorithm. This algo- rithm uses a fuzzy inference system (FIS) and a modified Elman neural network (MENN). The FIS adopts the crucial criteria of vertical handoff as input variables and makes handoff decision based on the defined rule base. The MENN helps to predict the number of users of the after-handoff network, which is a pivotal variable of the FIS. Simulation results show that, compared with the conventional method, the AMVHO decision algorithm a- chieves better performance in guaranteeing the quality of service (QoS) of the after-handoff communication.
基金the auspices of the National“973”Key Project for base research on urban traffic monitoring and management system(G1998030408)
文摘This paper illustrates the performance of a mobile positioning technique applicable to a GSM network.An experimental system of a network-based GSM positioning for ITS has been proposed, and the hybrid TOA-TDOA method based on GSM signaling has been analyzed and used. The performance of the proposed system is showed through simulations in urban and suburban environments. The accuracy for 67% mobile stations is 70 m in urban and 120 m in suburban. The accuracy, coverage and network load of positioning system are also analyzed.
基金supported by the National Natural Science Foundation of China (No.10974044)the Open Project of the Key Lab of the Technique of Electricity Transmission, Distribution and Conservation in Changzhou, China
文摘In order to establish an effective wireless communication system in an underground coal-mine environment, the propagation of radio waves through a rectangular-like mine tunnel was investigated by jointly, considering both the dielectric constant and the reflectance of a mine tunnel. By combining free space and modified waveguide propagation models, we propose a new hybrid propagation model based on ray tracing. Simulation results have shown the effectiveness of establishing a wireless Local Area Network (LAN) in this coal-mine environment. The results of this research will be very useful as a guide in the design and development of tunnel wireless LAN systems.
基金supported by the National Science and Technology Support Program of China (2015BAG10B01)the National Science Foundation of China under Grant No. 61232016, No.U1405254the PAPD fund
文摘Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.
基金the support from NSFC under Grant 61222105the 863 Plan of China under Grant 2014AA01A706+3 种基金the project of State Key Lab under Grant RCS2012ZT013the Key Project of Chinese Ministry of Education under Grant 313006the Key Project for Railway Ministry of China under Grant 2012X008-Athe project of State Key Lab under Grant No. RCS2011ZZ002
文摘With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.