Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel ...Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(DEs)are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region.In this paper,studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation,and obtained was the approximate analytical expression for principle diffraction efficiency(PDE).Also,put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction.By calculation and analysis,it is shown that the relative error is not more than 0.3dB for the case of three RF signals within the frequency space of 60MHz.展开更多
This paper proposes the design and research on the high bandwidth linear frequency sweep signal source involved in the readout unit module of the wireless passive pressure sensor in high temperature based on the princ...This paper proposes the design and research on the high bandwidth linear frequency sweep signal source involved in the readout unit module of the wireless passive pressure sensor in high temperature based on the principle of mutual inductance coupling which is applied widely at present. The operating principle of the linear sweep frequency source based on the direct digital frequency synthesis (DDS) technology is introduced, and the implementation method of the hardware circuit and logic sequential control process required in our system has been realized utilizing this technology. Through the experiments under different conditions of the step value, the sweep range and other related design indicators, the influence on the extraction method of resonance frequency information, extraction accuracy, and others during the readout system of the mutual inductance coupling sensor are analyzed and studied. The design of the linear frequency sweep signal source is realized with a resonance frequency change resolution of 6 kHz, a minimum step value of 1 kHz, and a precision of frequency for 0.116 Hz within the sweep width of 1 MHz - 100MHz. Due to the use of the integrated commercial chip, the linear sweep frequency source is made small in size, high working frequency, high resolution and low step values for the readout unit modularized of a higher application value.展开更多
基金National Natural Science Foundation of China(60671027)Sichuan Province Basic Research Project(07JY029-089)
文摘Magneto-optic(MO)coupling of guided optical waves with microwave magnetostatic waves(MSWs)simultaneously excited by multiple radio frequency(RF)signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(DEs)are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region.In this paper,studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation,and obtained was the approximate analytical expression for principle diffraction efficiency(PDE).Also,put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction.By calculation and analysis,it is shown that the relative error is not more than 0.3dB for the case of three RF signals within the frequency space of 60MHz.
文摘This paper proposes the design and research on the high bandwidth linear frequency sweep signal source involved in the readout unit module of the wireless passive pressure sensor in high temperature based on the principle of mutual inductance coupling which is applied widely at present. The operating principle of the linear sweep frequency source based on the direct digital frequency synthesis (DDS) technology is introduced, and the implementation method of the hardware circuit and logic sequential control process required in our system has been realized utilizing this technology. Through the experiments under different conditions of the step value, the sweep range and other related design indicators, the influence on the extraction method of resonance frequency information, extraction accuracy, and others during the readout system of the mutual inductance coupling sensor are analyzed and studied. The design of the linear frequency sweep signal source is realized with a resonance frequency change resolution of 6 kHz, a minimum step value of 1 kHz, and a precision of frequency for 0.116 Hz within the sweep width of 1 MHz - 100MHz. Due to the use of the integrated commercial chip, the linear sweep frequency source is made small in size, high working frequency, high resolution and low step values for the readout unit modularized of a higher application value.