To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
The medium access control (MAC) issue was discussed in mobile Ad Hoc networks (MANETs). Based on the IEEE 802.11 MAC protocol, this paper proposed two schemes, the forward-packet-first (FPF) scheme based on the adapti...The medium access control (MAC) issue was discussed in mobile Ad Hoc networks (MANETs). Based on the IEEE 802.11 MAC protocol, this paper proposed two schemes, the forward-packet-first (FPF) scheme based on the adaptive backoff contention window and multihop forward chain transmission by invitation (MFCTI) scheme. In the FPF scheme, the contention window was adjusted adaptively according to the traffic priority. Route information and the broadcast characteristic of radio were utilized in MFCTI scheme. The performance of these schemes was studied in multihop environments by simulations. The results showed that the proposed schemes could improve the network throughput, reduce the end-to-end average delay, and mitigate local congestion effectively. Another attractive feature was that the schemes could be implemented with minor modifications to the IEEE 802.11 MAC.展开更多
Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy ...Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.展开更多
In this paper, the capacity of multi-channel, multi-hop ad hoc network is evaluated.In particular, the performance of multi-hop ad hoc network with single channel IEEE 802.11MAC utilizing different topologies is shown...In this paper, the capacity of multi-channel, multi-hop ad hoc network is evaluated.In particular, the performance of multi-hop ad hoc network with single channel IEEE 802.11MAC utilizing different topologies is shown. Also the scaling laws of throughputs for large-scale ad hoc networks and the theoretical guaranteed throughput bounds for multi-channel gridtopology systems are proposed. The results presented in this work will help researchers to choosethe proper parameter settings in evaluation of protocols for multi-hop ad hoc networks.展开更多
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
文摘The medium access control (MAC) issue was discussed in mobile Ad Hoc networks (MANETs). Based on the IEEE 802.11 MAC protocol, this paper proposed two schemes, the forward-packet-first (FPF) scheme based on the adaptive backoff contention window and multihop forward chain transmission by invitation (MFCTI) scheme. In the FPF scheme, the contention window was adjusted adaptively according to the traffic priority. Route information and the broadcast characteristic of radio were utilized in MFCTI scheme. The performance of these schemes was studied in multihop environments by simulations. The results showed that the proposed schemes could improve the network throughput, reduce the end-to-end average delay, and mitigate local congestion effectively. Another attractive feature was that the schemes could be implemented with minor modifications to the IEEE 802.11 MAC.
基金Project supported by the Development Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.045115012)the Shanghai Leading Academic Discipline Project (Grant No.T0102)the Shanghai Fiber Optics Leading Lab (Grant No.SKLSF0200505)
文摘Routing algorithm is a challenge for a mobile ad hoc network (MANET), but current routing protocols for MANETs consider the path with minimum number of hops as the optimal path to a given destination. This strategy does not balance the traffic load over a MANET, and may result in some disadvantages such as creating congested area, depleting power faster and enlarging time delay in the nodes with heavy duties. In this paper, we propose a routing scheme that balances the load over the network by selecting a path based on its mean load-square, the proposed routing metric can reflect not only the load of the path, but also the load distribution along the path. Simulation results show effectiveness of this routing scheme on balancing the load over all nodes in the network.
文摘In this paper, the capacity of multi-channel, multi-hop ad hoc network is evaluated.In particular, the performance of multi-hop ad hoc network with single channel IEEE 802.11MAC utilizing different topologies is shown. Also the scaling laws of throughputs for large-scale ad hoc networks and the theoretical guaranteed throughput bounds for multi-channel gridtopology systems are proposed. The results presented in this work will help researchers to choosethe proper parameter settings in evaluation of protocols for multi-hop ad hoc networks.