期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
时间分数阶对流扩散方程的有限点法分析
1
作者 陈有玲 《平顶山学院学报》 2023年第5期15-22,共8页
基于有限差分法得到时间离散格式和利用有限点法建立离散代数系统,提出了数值求解时间分数对流扩散方程的无网格有限点法,详细推导了时间离散格式是无条件稳定的和该方法的理论误差估计.数值算例验证了理论结果,并验证了该方法的有效性... 基于有限差分法得到时间离散格式和利用有限点法建立离散代数系统,提出了数值求解时间分数对流扩散方程的无网格有限点法,详细推导了时间离散格式是无条件稳定的和该方法的理论误差估计.数值算例验证了理论结果,并验证了该方法的有效性和收敛性. 展开更多
关键词 无网格有限点法 时间分数阶对流扩散方程 稳定 误差估计
下载PDF
A partition-of-unity based three-node triangular element with continuous nodal stress using radial-polynomial basis functions
2
作者 YANG YongTao ZHENG Hong XU DongDong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第10期1518-1536,共19页
A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine th... A partition-of-unity (PU) based "FE-Meshfree" three-node triangular element (Trig3-RPIM) was recently developed for linear elastic problems. This Trig3-RPIM element employs hybrid shape functions that combine the shape functions of three-node triangular element (Trig3) and radial-polynomial basis functions for the purpose of synergizing the merits of both finite element method and meshfree method. Although Trig3-RPIM element is capable of obtaining higher accuracy and convergence rate than the Trig3 element and four-node iso-parametric quadrilateral element without adding extra nodes or degrees of freedom (DOFs), the nodal stress field through Trig3-RP1M element is not continuous and extra stress smooth operations are still needed in the post processing stage. To further improve the property of Trig3-RPIM element, a new PU-based triangular element with continuous nodal stress, called Trig3-RPIMcns, is developed. Numerical examples including several linear, free vibration and forced vibration test problems, have confirmed the correctness and feasibility of the proposed Trig3-RPIMcns element. 展开更多
关键词 partition of unity FE-Meshfree element Trig3-RPlMcns mesh distortion radial-polynomial basis functions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部