Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Nanoscale graphene oxide(NGO)sheets were synthesized and used as carbocatalysts for effectiveoxidation of benzylic alcohols and aromatic aldehydes.For oxidation of alcohols in the presence ofH2O2at80°C,the NGOs(2...Nanoscale graphene oxide(NGO)sheets were synthesized and used as carbocatalysts for effectiveoxidation of benzylic alcohols and aromatic aldehydes.For oxidation of alcohols in the presence ofH2O2at80°C,the NGOs(20%mass fraction)as carbocatalysts showed selectivity toward aldehyde.The rate and yield of this reaction strongly depended on the nature of substituents on the alcohol.For4‐nitrobenzyl alcohol,<10%of it was converted into the corresponding carboxylic acid after24h.By contrast,4‐methoxybenzyl alcohol and diphenylmethanol were completely converted into thecorresponding carboxylic acid and ketone after only9and3h,respectively.The conversion ratesfor oxidation of aromatic aldehydes by NGO carbocatalysts were higher than those for alcohol oxidation.For all the aldehydes,complete conversion to the corresponding carboxylic acids wasachieved using7%(mass fraction)of NGO at70°C within2–3h.Possible mechanisms for NGOcarbocatalyst structure‐dependent oxidation of benzyl alcohols and structure‐independent oxidationof aromatic aldehydes are discussed.展开更多
By using metal nitrates as starting materials and citric acid as a complexing agent, Y2Si207:Re3+ (Re=Eu, Tb) phosphors were prepared by a sol-gel method. X-ray diffraction was employed to characterize the resulti...By using metal nitrates as starting materials and citric acid as a complexing agent, Y2Si207:Re3+ (Re=Eu, Tb) phosphors were prepared by a sol-gel method. X-ray diffraction was employed to characterize the resulting samples. The results of XRD indicate that the α-Y2Si2O7 nanocrystal with size of 27 nm is obtained at 1000 ℃ and the doping ion content does not influence the structure. The excitation spectra in the UV and VUV ranges and the emission spectra of Re^3+ doped samples were measured. The excitation spectra in the VUV range is due to absorption of host, that in the UV range is ascribed to absorption transitions from 4f to 5d state of the Tb^3+ and the charge transfer in the En^3+-O^2- bond. The spectral energy distribution of the Tb^3+ emission depends strongly on the Tb3+ concentration. The dependence of photolumineseenee intensity on Re^3+ concentration is also discussed in detail. The fluorescent decay curves at room temperature were measured and analyzed.展开更多
Thiamine derivatives that are cheap, readily available, non-toxic and green are used as heterogeneous catalyst for the generation of cyclic carbonates through cycloaddition of CO_2 to epoxides without the need of co-c...Thiamine derivatives that are cheap, readily available, non-toxic and green are used as heterogeneous catalyst for the generation of cyclic carbonates through cycloaddition of CO_2 to epoxides without the need of co-catalyst and solvent. The interaction between thiamine hydrochloride(VB_1-Cl) and substrates(CO_2 and propylene oxide) was proven by ultraviolet-visible spectroscopy and ~1H nuclear magnetic resonance analysis, and it is deduced that the synergistic action among multi-functional groups(hydroxyl, halide anion and amine) is a favorable factor for cycloaddition reaction. A series of VB_1/GO aerogels were facilely prepared through the addition of aqueous VB_1 derivatives to a suspension of GO in ethanol at room temperature. It was found that the aerogel generated through the interaction of VB_1-Cl with GO shows catalytic activity and stability higher than those of VB_1-Cl. It is because the electrostatic interaction between GO and VB_1-Cl enhances the nucleophilicity and leaving ability of anion. The effects of reaction temperature, catalyst loading, CO_2 pressure and reaction time on CO_2 cycloaddition to propylene oxide were thoroughly studied.展开更多
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
文摘Nanoscale graphene oxide(NGO)sheets were synthesized and used as carbocatalysts for effectiveoxidation of benzylic alcohols and aromatic aldehydes.For oxidation of alcohols in the presence ofH2O2at80°C,the NGOs(20%mass fraction)as carbocatalysts showed selectivity toward aldehyde.The rate and yield of this reaction strongly depended on the nature of substituents on the alcohol.For4‐nitrobenzyl alcohol,<10%of it was converted into the corresponding carboxylic acid after24h.By contrast,4‐methoxybenzyl alcohol and diphenylmethanol were completely converted into thecorresponding carboxylic acid and ketone after only9and3h,respectively.The conversion ratesfor oxidation of aromatic aldehydes by NGO carbocatalysts were higher than those for alcohol oxidation.For all the aldehydes,complete conversion to the corresponding carboxylic acids wasachieved using7%(mass fraction)of NGO at70°C within2–3h.Possible mechanisms for NGOcarbocatalyst structure‐dependent oxidation of benzyl alcohols and structure‐independent oxidationof aromatic aldehydes are discussed.
文摘By using metal nitrates as starting materials and citric acid as a complexing agent, Y2Si207:Re3+ (Re=Eu, Tb) phosphors were prepared by a sol-gel method. X-ray diffraction was employed to characterize the resulting samples. The results of XRD indicate that the α-Y2Si2O7 nanocrystal with size of 27 nm is obtained at 1000 ℃ and the doping ion content does not influence the structure. The excitation spectra in the UV and VUV ranges and the emission spectra of Re^3+ doped samples were measured. The excitation spectra in the VUV range is due to absorption of host, that in the UV range is ascribed to absorption transitions from 4f to 5d state of the Tb^3+ and the charge transfer in the En^3+-O^2- bond. The spectral energy distribution of the Tb^3+ emission depends strongly on the Tb3+ concentration. The dependence of photolumineseenee intensity on Re^3+ concentration is also discussed in detail. The fluorescent decay curves at room temperature were measured and analyzed.
文摘Thiamine derivatives that are cheap, readily available, non-toxic and green are used as heterogeneous catalyst for the generation of cyclic carbonates through cycloaddition of CO_2 to epoxides without the need of co-catalyst and solvent. The interaction between thiamine hydrochloride(VB_1-Cl) and substrates(CO_2 and propylene oxide) was proven by ultraviolet-visible spectroscopy and ~1H nuclear magnetic resonance analysis, and it is deduced that the synergistic action among multi-functional groups(hydroxyl, halide anion and amine) is a favorable factor for cycloaddition reaction. A series of VB_1/GO aerogels were facilely prepared through the addition of aqueous VB_1 derivatives to a suspension of GO in ethanol at room temperature. It was found that the aerogel generated through the interaction of VB_1-Cl with GO shows catalytic activity and stability higher than those of VB_1-Cl. It is because the electrostatic interaction between GO and VB_1-Cl enhances the nucleophilicity and leaving ability of anion. The effects of reaction temperature, catalyst loading, CO_2 pressure and reaction time on CO_2 cycloaddition to propylene oxide were thoroughly studied.