In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the c...In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.展开更多
Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed ...Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.展开更多
Phosphate-manganese, tannic acid and vanadium conversion coatings were proposed as an effective pre-treatment layer between electroless Ni-P coating and AZ91D magnesium alloy substrate to replace the traditional chrom...Phosphate-manganese, tannic acid and vanadium conversion coatings were proposed as an effective pre-treatment layer between electroless Ni-P coating and AZ91D magnesium alloy substrate to replace the traditional chromate plus HF pre-treatment. The electrochemical results show that the chrome-free coatings plus electroless Ni-P coating on the magnesium alloy has the lowest corrosion current density and most positive corrosion potential compared with chromate plus electroless Ni-P coating on the magnesium alloy. These proposed pre-treatment layers on the substrate reduce the corrosion of magnesium during plating process, and reduce the potential difference between the matrix and the second phase. Thus, an electroless Ni-P coating with fine crystalline and dense structure was obtained, with preferential phosphorus content, low porosity, good corrosion-resistance and strengthened adhesion than the chromate plus electroless Ni-P.展开更多
To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SO...To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
In Wireless Mesh Networks (WMNs),the performance of conventional TCP significantly deteriorates due to the unreliable wireless channel.To enhance TCP performance in WMNs,TCP/LT is proposed in this paper.It introduces ...In Wireless Mesh Networks (WMNs),the performance of conventional TCP significantly deteriorates due to the unreliable wireless channel.To enhance TCP performance in WMNs,TCP/LT is proposed in this paper.It introduces fountain codes into packet reorganization in the protocol stack of mesh gateways and mesh clients.Furthermore,it is compatible with conventional TCP.Regarded as a Performance Enhancement Proxies (PEP),a mesh gateway buffers TCP packets into several blocks.It simultaneously processes them by using fountain encoders and then sends them to mesh clients.Apart from the improvement of the throughput of a unitary TCP flow,the entire network utility maximization can also be ensured by adjusting the scale of coding blocks for each TCP flow adaptively.Simulations show that TCP/LT presents high throughput gains over single TCP in lossy links of WMNs while preserving the fairness for multiple TCPs.As losses increase,the transmission delay of TCP/LT experiences a slow linear growth in contrast to the exponential growth of TCP.展开更多
A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/s...A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.展开更多
A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys...A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.展开更多
The relationship between ultrasonic nonlinearity and microstructure of the liner was studied during the whole curing process by ultrasonic transmission method and infrared spectroscopy.Nonlinearity of input instrument...The relationship between ultrasonic nonlinearity and microstructure of the liner was studied during the whole curing process by ultrasonic transmission method and infrared spectroscopy.Nonlinearity of input instrumentation was minimized by the natural filtering effect of piezoelectric discs and the maximum excitation energy was acquired simultaneously so as to improve the accuracy of the measuring data.The experimental results indicate that in the liner curing reaction at40℃ultrasonic nonlinearity parameter decreases gradually after a sharp decline,which is consistent with the outcome of infrared spectroscopy as the curing degree increases.The research suggests an effective nondestructive approach to detect the curing properties of the liner in a nonlinear ultrasonic way.展开更多
Nowadays, the electrochemical water treatments are very important methods used for the removal of organic and inorganic impurities from fresh, drinking water and wastewater. The method consists of carrying out the oxi...Nowadays, the electrochemical water treatments are very important methods used for the removal of organic and inorganic impurities from fresh, drinking water and wastewater. The method consists of carrying out the oxidation reaction at the anode where pollutants are transferred into non-toxic substances, by decomposing into simpler compounds or transferring into oxidation form. RuO2-based Dimensional Stable Anode (DSA) is a technologically good and important electrode for water treatment because of its unique characteristics such as high thermal and chemical stability, low resistivity and low overpotential. This paper reviews the methods for fabricating RuO2-based electrodes that can be used in electrochemical water treatment. Depending on the different fabrication routes, RuO2 electrodes will possess the different electro-catalytic property and stability.展开更多
The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energ...The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energy storage) systems have become fTequently installed for combined heating and cooling of commercial and institutional buildings. After 20 years, operational experiences of these systems are proved to be energy efficient, technically safe and profitable. In this paper, the current statistics of UTES applications are given as well as market trends and technical development. The goal is to encourage designers and installers in other counties to use this promising technology.展开更多
This study aimed to get an optimum level of combined organic selenium, inorganic selenium and vitamin E in obtaining the best production and reproduction of quails as well as the highest antioxidant level in quail egg...This study aimed to get an optimum level of combined organic selenium, inorganic selenium and vitamin E in obtaining the best production and reproduction of quails as well as the highest antioxidant level in quail eggs. Seven hundred twenty quails (360 females and 360 males) at the age of six weeks old were used in this research. Nine treatment diets were: To (commercial diet/control), Tl (diet containing 0.46 ppm inorganic Se + 43.50 ppm vitamin E), T2 (diet containing 0.46 ppm inorganic Se + 87.00 ppm vitamin E), T3 (diet containing 0.92 ppm inorganic Se + 43.50 ppm vitamin E), T4 (diet containing 0.92 ppm inorganic Se +87.00 ppm vitamin E), Ts (diet containing 0.46 ppm organic Se + 43.50 ppm vitamin E), T6 (diet containing 0.46 ppm organic Se + 87.00 ppm vitamin E), T7 (diet containing 0.92 ppm organic Se + 43.50 vitamin E) and Ts (diet containing 0.92 ppm organic Se 0.92 + 87.00 ppm vitamin E). The design of the experiment was a factorial nested design. Any significant differences among the treatments were analyzed by using Duncan's test. The results of this study indicated that 0.92 ppm organic selenium + 43.50 ppm vitamin E (T7) in general gave the highest content of selenium in meat, in egg albumin, and in egg yolk as well as hatchability. The antioxidants as represented by vitamin E and glutathione peroxidase enzyme in the quail eggs were significantly higher as compared to that of quails fed other treatment diets.展开更多
For an energy transfer network, the irreversible depletion of excited electron energy occurs through either an efficient flow into an outer energy sink or an inefficient decay. With a small decay rate, the energy tran...For an energy transfer network, the irreversible depletion of excited electron energy occurs through either an efficient flow into an outer energy sink or an inefficient decay. With a small decay rate, the energy transfer efficiency is quantitatively reflected by the average life time of excitation energy before being trapped in the sink where the decay process is omitted. In the weak dissipation regime, the trapping time is analyzed within the exciton population subspace based on the secular Redfield equation. The requirement of the noise-enhanced energy transfer is obtained, where the trapping time follows an exact or approximate 1/F- scaling of the dissipation strength F. On the opposite side, optimal initial system states are conceptually constructed to suppress the 1/F-scaling of the trapping time and maximize the coherent transfer efficiency. Our theory is numerically testified in four models, including a biased two-site system, a symmetric three-site branching system, a homogeneous one- dimensional chain, and an 8-chromophore FMO protein complex.展开更多
With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte s...With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system.展开更多
The high surface energy of nanomaterials endows them a metastable nature,which greatly limits their application.However,in some cases,the degradation process derived from the poor stability of nanomaterials offers an ...The high surface energy of nanomaterials endows them a metastable nature,which greatly limits their application.However,in some cases,the degradation process derived from the poor stability of nanomaterials offers an unconventional approach to design and obtain functional nanomaterials.Herein,based on the poor stability of ZnSe-[DETA]0.5 hybrid nanobelts,we developed a new strategy to chemically graphitize and functionalize graphene oxide(GO).When ZnSe[DETA]0.5 hybrid nanobelts encountered a strong acid,they were attacked by H^+cations and could release highly reactive Se^2−anions into the reaction solution.Like other common reductants(such as N2H4·H2O),these Se^2−anions exhibited an excellent ability to restore the structure of GO.The structural restoration of GO was greatly affected by the reaction time,the volume of HCl,and the mass ratio between GO and ZnSe[DETA]0.5 nanobelts.By carefully controlling the reaction process and the post-processing process,we finally obtained several Se-based reduced GO(RGO)nanocomposites(such as ZnSe/Se-RGO,ZnSe-RGO,and Se-RGO)and various selenide/metal-RGO nanocomposites(such as Ag2Se-RGO,Cu2Se-RGO,and Pt-RGO).Although the original structure and composition of ZnSe[DETA]0.5 nanobelts are destroyed,the procedure presents an unconventional way to chemically graphitize and functionalize GO and thus provides a new material synthesis platform for nanocomposites.展开更多
基金Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of Chinathe Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ11-0150)+1 种基金the National Natural Science Foundation of China(No.51177011)the National High Technology Research and Development Program of China(863 Program)(No.2012AA050210)
文摘In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.
基金Project(51404038)supported by the National Natural Science Foundation of China
文摘Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.
基金Project(50871046)supported by the National Natural Science Foundation of ChinaProject(2010CB631001)supported by the National Basic Research Program of China+1 种基金Project supported by the Program for Changjiang Scholars and Innovative Research Team inUniversity,ChinaIndo-China cultural exchange scholarship program by the Ministry of Human Resource Department(MHRD,India)and Ministry of Education(MOE,China)
文摘Phosphate-manganese, tannic acid and vanadium conversion coatings were proposed as an effective pre-treatment layer between electroless Ni-P coating and AZ91D magnesium alloy substrate to replace the traditional chromate plus HF pre-treatment. The electrochemical results show that the chrome-free coatings plus electroless Ni-P coating on the magnesium alloy has the lowest corrosion current density and most positive corrosion potential compared with chromate plus electroless Ni-P coating on the magnesium alloy. These proposed pre-treatment layers on the substrate reduce the corrosion of magnesium during plating process, and reduce the potential difference between the matrix and the second phase. Thus, an electroless Ni-P coating with fine crystalline and dense structure was obtained, with preferential phosphorus content, low porosity, good corrosion-resistance and strengthened adhesion than the chromate plus electroless Ni-P.
基金supported by the 863 Program (2015AA01A705)NSFC (61271187)
文摘To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.
基金supported by the State Key Program of National Nature Science Foundation of China under Grants No.U0835003,No.60872087
文摘In Wireless Mesh Networks (WMNs),the performance of conventional TCP significantly deteriorates due to the unreliable wireless channel.To enhance TCP performance in WMNs,TCP/LT is proposed in this paper.It introduces fountain codes into packet reorganization in the protocol stack of mesh gateways and mesh clients.Furthermore,it is compatible with conventional TCP.Regarded as a Performance Enhancement Proxies (PEP),a mesh gateway buffers TCP packets into several blocks.It simultaneously processes them by using fountain encoders and then sends them to mesh clients.Apart from the improvement of the throughput of a unitary TCP flow,the entire network utility maximization can also be ensured by adjusting the scale of coding blocks for each TCP flow adaptively.Simulations show that TCP/LT presents high throughput gains over single TCP in lossy links of WMNs while preserving the fairness for multiple TCPs.As losses increase,the transmission delay of TCP/LT experiences a slow linear growth in contrast to the exponential growth of TCP.
基金Project(51271080) supported by the National Natural Science Foundation of ChinaProject(2012JSSPITP1968) supported by the Innovative Foundation for Students of Jiangsu Province,ChinaProject(CKJB201204) supported by the Innovation Fund of Nanjing Institute of Technology,China
文摘A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.
基金Project(2007AA11A104) supported by the High-tech Research and Development Program of ChinaProject(2009CB220100) supported by the National Basic Research Program of China
文摘A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.
基金National Natural Science Foundation of China(No.61201412)
文摘The relationship between ultrasonic nonlinearity and microstructure of the liner was studied during the whole curing process by ultrasonic transmission method and infrared spectroscopy.Nonlinearity of input instrumentation was minimized by the natural filtering effect of piezoelectric discs and the maximum excitation energy was acquired simultaneously so as to improve the accuracy of the measuring data.The experimental results indicate that in the liner curing reaction at40℃ultrasonic nonlinearity parameter decreases gradually after a sharp decline,which is consistent with the outcome of infrared spectroscopy as the curing degree increases.The research suggests an effective nondestructive approach to detect the curing properties of the liner in a nonlinear ultrasonic way.
文摘Nowadays, the electrochemical water treatments are very important methods used for the removal of organic and inorganic impurities from fresh, drinking water and wastewater. The method consists of carrying out the oxidation reaction at the anode where pollutants are transferred into non-toxic substances, by decomposing into simpler compounds or transferring into oxidation form. RuO2-based Dimensional Stable Anode (DSA) is a technologically good and important electrode for water treatment because of its unique characteristics such as high thermal and chemical stability, low resistivity and low overpotential. This paper reviews the methods for fabricating RuO2-based electrodes that can be used in electrochemical water treatment. Depending on the different fabrication routes, RuO2 electrodes will possess the different electro-catalytic property and stability.
文摘The market for shallow geothermal solutions has been continuously growing in Sweden and is recognized as a cost effective and environmental sound way for space heating. In later years, UTES (underground thermal energy storage) systems have become fTequently installed for combined heating and cooling of commercial and institutional buildings. After 20 years, operational experiences of these systems are proved to be energy efficient, technically safe and profitable. In this paper, the current statistics of UTES applications are given as well as market trends and technical development. The goal is to encourage designers and installers in other counties to use this promising technology.
文摘This study aimed to get an optimum level of combined organic selenium, inorganic selenium and vitamin E in obtaining the best production and reproduction of quails as well as the highest antioxidant level in quail eggs. Seven hundred twenty quails (360 females and 360 males) at the age of six weeks old were used in this research. Nine treatment diets were: To (commercial diet/control), Tl (diet containing 0.46 ppm inorganic Se + 43.50 ppm vitamin E), T2 (diet containing 0.46 ppm inorganic Se + 87.00 ppm vitamin E), T3 (diet containing 0.92 ppm inorganic Se + 43.50 ppm vitamin E), T4 (diet containing 0.92 ppm inorganic Se +87.00 ppm vitamin E), Ts (diet containing 0.46 ppm organic Se + 43.50 ppm vitamin E), T6 (diet containing 0.46 ppm organic Se + 87.00 ppm vitamin E), T7 (diet containing 0.92 ppm organic Se + 43.50 vitamin E) and Ts (diet containing 0.92 ppm organic Se 0.92 + 87.00 ppm vitamin E). The design of the experiment was a factorial nested design. Any significant differences among the treatments were analyzed by using Duncan's test. The results of this study indicated that 0.92 ppm organic selenium + 43.50 ppm vitamin E (T7) in general gave the highest content of selenium in meat, in egg albumin, and in egg yolk as well as hatchability. The antioxidants as represented by vitamin E and glutathione peroxidase enzyme in the quail eggs were significantly higher as compared to that of quails fed other treatment diets.
基金supported by the National Natural Science Foundation of China(No.21573195)the Ministry of Science and Technology of China(MOST-2014CB921203)
文摘For an energy transfer network, the irreversible depletion of excited electron energy occurs through either an efficient flow into an outer energy sink or an inefficient decay. With a small decay rate, the energy transfer efficiency is quantitatively reflected by the average life time of excitation energy before being trapped in the sink where the decay process is omitted. In the weak dissipation regime, the trapping time is analyzed within the exciton population subspace based on the secular Redfield equation. The requirement of the noise-enhanced energy transfer is obtained, where the trapping time follows an exact or approximate 1/F- scaling of the dissipation strength F. On the opposite side, optimal initial system states are conceptually constructed to suppress the 1/F-scaling of the trapping time and maximize the coherent transfer efficiency. Our theory is numerically testified in four models, including a biased two-site system, a symmetric three-site branching system, a homogeneous one- dimensional chain, and an 8-chromophore FMO protein complex.
基金Projects(51974368,51774333) supported by the National Natural Science Foundation of ChinaProject(2020JJ2048) supported by the Hunan Provincial Natural Science Foundation of China。
文摘With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system.
基金This work was supported by the National Natural Science Foundation of China(21431006,51732011,21761132008 and 21805189)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(21521001)+3 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(QYZDJ-SSW-SLH036)the National Basic Research Program of China(2014CB931800)and the Excellence and Scientific Research Grant from Hefei Science Center of CAS(2015HSC-UE007).This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication,USTC.Xu L is grateful for the funding support from China Postdoctoral Science Foundation(2018M630711 and 2019T120540)and the Natural Science Foundation of Guangdong(2018A030310617).
文摘The high surface energy of nanomaterials endows them a metastable nature,which greatly limits their application.However,in some cases,the degradation process derived from the poor stability of nanomaterials offers an unconventional approach to design and obtain functional nanomaterials.Herein,based on the poor stability of ZnSe-[DETA]0.5 hybrid nanobelts,we developed a new strategy to chemically graphitize and functionalize graphene oxide(GO).When ZnSe[DETA]0.5 hybrid nanobelts encountered a strong acid,they were attacked by H^+cations and could release highly reactive Se^2−anions into the reaction solution.Like other common reductants(such as N2H4·H2O),these Se^2−anions exhibited an excellent ability to restore the structure of GO.The structural restoration of GO was greatly affected by the reaction time,the volume of HCl,and the mass ratio between GO and ZnSe[DETA]0.5 nanobelts.By carefully controlling the reaction process and the post-processing process,we finally obtained several Se-based reduced GO(RGO)nanocomposites(such as ZnSe/Se-RGO,ZnSe-RGO,and Se-RGO)and various selenide/metal-RGO nanocomposites(such as Ag2Se-RGO,Cu2Se-RGO,and Pt-RGO).Although the original structure and composition of ZnSe[DETA]0.5 nanobelts are destroyed,the procedure presents an unconventional way to chemically graphitize and functionalize GO and thus provides a new material synthesis platform for nanocomposites.