锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池...锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。展开更多
为提升无线电能传输(wireless power transfer,WPT)系统传输性能,需在控制过程中实时获取负载与耦合系数等关键信息,而该信息的获取目前普遍采用无线通讯模块或增加额外通信线圈等方式,增加了系统复杂度,尤其面临复杂水下工况及高频电...为提升无线电能传输(wireless power transfer,WPT)系统传输性能,需在控制过程中实时获取负载与耦合系数等关键信息,而该信息的获取目前普遍采用无线通讯模块或增加额外通信线圈等方式,增加了系统复杂度,尤其面临复杂水下工况及高频电磁环境,在通讯过程中极易造成通讯异常而导致系统瘫痪。为此,文中提出一种新型基于无迹卡尔曼滤波的WPT系统互感及负载关键参数在线识别方法,该方法仅需采样原边侧电压瞬时值,即可实时获取互感与负载等关键参数信息。同时为提升辨识精度与收敛速度,采用离线式神经网络指导粒子群优化算法建立系统噪声协方差矩阵。实验结果表明,该算法具有模型简单、计算精度较高等特点,在变负载、变移相控制角及偏移情况下,所提出的在线辨识方法对负载与互感的最大识别误差分别为6.19%和1.7%,且2 ms左右即可完成负载的动态识别,具有一定的工程应用价值。展开更多
文摘锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。
文摘为提升无线电能传输(wireless power transfer,WPT)系统传输性能,需在控制过程中实时获取负载与耦合系数等关键信息,而该信息的获取目前普遍采用无线通讯模块或增加额外通信线圈等方式,增加了系统复杂度,尤其面临复杂水下工况及高频电磁环境,在通讯过程中极易造成通讯异常而导致系统瘫痪。为此,文中提出一种新型基于无迹卡尔曼滤波的WPT系统互感及负载关键参数在线识别方法,该方法仅需采样原边侧电压瞬时值,即可实时获取互感与负载等关键参数信息。同时为提升辨识精度与收敛速度,采用离线式神经网络指导粒子群优化算法建立系统噪声协方差矩阵。实验结果表明,该算法具有模型简单、计算精度较高等特点,在变负载、变移相控制角及偏移情况下,所提出的在线辨识方法对负载与互感的最大识别误差分别为6.19%和1.7%,且2 ms左右即可完成负载的动态识别,具有一定的工程应用价值。