To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake, two sites, in Meiliang Bay (ML) a...To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake, two sites, in Meiliang Bay (ML) and Wuli Lake (WL), were selected to study the fractionation of iron, sulfur and related heavy metals. There were relatively high concentrations of Fe^2+ and low concentrations of total S^2- in porewaters, indicating that conditions in these sediments favored iron reduction. The concentrations of acid volatile sulfides in sediments were 1.9-9.6 μmol g^-1 at ML and 1.0-11.7 μmool g^-1 at WL, both in the range of values detected in unpolluted lakes. Pyrite-S was 10.2-49.4 μmol g^-1 at ML and 10.3- 33.0 μmol g^-1 at WL, accounting for more than 69% of the reduced inorganic sulfur at both sites. The low degree of sulphidization (〈 14%) and pyritization (〈 10%) indicate that sulfate may be the limiting factor for pyrite formation. The extractability of Mn, Cu, Pb, Zn, Ni, and Cr in sediments all suggest that sulfides are not the major binding phase for these metals during early diagenesis. Sulfur may play a modest role in the geochemistry of iron and traced metals in the sediments.展开更多
Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised...Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised by non-degradation, strong toxicity, and constant accumulation, posing a grave threat to karst mountain fragile soil ecosystem. To reduce the harm caused by heavy metal pollution and damage to agricultural products, research was undertaken on the basis of previous work by simulating pot experiments on pak choi cabbage(Brassica rapa chinensis)planted in Cd-contaminated soil: different amounts of organic mineral fertilisers(OMF) compared with chemical fertiliser(CF) were used and by detecting the amount of heavy metal in the mature vegetable, a better fertilisation strategy was developed. The results showed that the Cd content in vegetables grown with CF was 23.70 mg/kg,while that of vegetables grown with OMF and bacterial inoculant was the lowest at 15.13 mg/kg. This suggests that the use of OMF and microbes in karst areas not only promotes plant growth but also hinders plant absorption of heavy metal ions in the soil. In addition, through the collection of pot leachate, the detection of water chemistrycharacteristics, and the calculation of the calcite saturation index, it was found that the OMF method also induces certain carbon sink effects. The results provide a new way in which rationalise the use of OMFs in karst areas to alleviate soil heavy metal pollution and increase soil carbon sequestration.展开更多
Research was done with the objective of evaluating the quality of water supplied to the potable water system in Hidalgo Del Parral, which comes from two main supply sources: wells from "Valle del Verano", which pro...Research was done with the objective of evaluating the quality of water supplied to the potable water system in Hidalgo Del Parral, which comes from two main supply sources: wells from "Valle del Verano", which provide water to the east side of the city, and the Water Treatment Plant, which receives water from different mines and supplies the west side of the city. When this plant is overcome on its capacity of treatment, a part of the water from the mines is fed directly to the northwest part of the city. The metals lead (Pb), chromium (Cr), cadmium (Cd), zinc (Zn), and arsenic (As) were analyzed by atomic absorption (AA) technique, based on the United States Environmental Protection Agency (EPA) Method 7000B (Revision 2, February 2007). The digestion process was done according to the guidelines established in Method NMX-AA-051-SCFI-2001, Analysis of Water-Determination of Metals by Atomic Absorption, developed by the National Standardization Technical Committee for Environmental Protection (Mexico). The samples were collected from the following points: 13 wells and 2 re-pumping stations of "Valle del Verano", the inlet and outlet of the Water Treatment Plant, and domestic faucets. The east side of the city, supplied by the wells of "Valle del Verano", is metal-pollution free. The water that comes from the mines contains high concentrations of As, Zn, Cd and Pb, with levels that can get to 0.12, 32.6, 0.26 and 3.5 mg/L, respectively. This water pollution generated by mining can be concluded from the high levels found in the domestic samples in which, for several points, the concentrations exceed the parameters set by the current guideline. According to the results, it is vital to set a plan of remediation for the water that comes from the mines, because there is a great risk for health in the consumotion of this water.展开更多
基金the National Natural Science Foundation of China (No.40730528)the National High Technology Research and Development Program (863 Program) of China (No.2007AA06Z411)the Social Development Plan of Jiangsu Province (No.BS2007161).
文摘To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake, two sites, in Meiliang Bay (ML) and Wuli Lake (WL), were selected to study the fractionation of iron, sulfur and related heavy metals. There were relatively high concentrations of Fe^2+ and low concentrations of total S^2- in porewaters, indicating that conditions in these sediments favored iron reduction. The concentrations of acid volatile sulfides in sediments were 1.9-9.6 μmol g^-1 at ML and 1.0-11.7 μmool g^-1 at WL, both in the range of values detected in unpolluted lakes. Pyrite-S was 10.2-49.4 μmol g^-1 at ML and 10.3- 33.0 μmol g^-1 at WL, accounting for more than 69% of the reduced inorganic sulfur at both sites. The low degree of sulphidization (〈 14%) and pyritization (〈 10%) indicate that sulfate may be the limiting factor for pyrite formation. The extractability of Mn, Cu, Pb, Zn, Ni, and Cr in sediments all suggest that sulfides are not the major binding phase for these metals during early diagenesis. Sulfur may play a modest role in the geochemistry of iron and traced metals in the sediments.
基金funded by National Natural Science Foundation of China(41373078)National Major Scientific Research Program(2013CB956702)Key Project of Natural Science Research in Colleges and Universities in Jiangsu Province(Grant No.16KJA180003)
文摘Heavy metal pollution in karst mountainous area of Guizhou has spread due to the long-term exploitation of mineral resources and the improper disposal of environmentally hazardous waste. Heavy metals are characterised by non-degradation, strong toxicity, and constant accumulation, posing a grave threat to karst mountain fragile soil ecosystem. To reduce the harm caused by heavy metal pollution and damage to agricultural products, research was undertaken on the basis of previous work by simulating pot experiments on pak choi cabbage(Brassica rapa chinensis)planted in Cd-contaminated soil: different amounts of organic mineral fertilisers(OMF) compared with chemical fertiliser(CF) were used and by detecting the amount of heavy metal in the mature vegetable, a better fertilisation strategy was developed. The results showed that the Cd content in vegetables grown with CF was 23.70 mg/kg,while that of vegetables grown with OMF and bacterial inoculant was the lowest at 15.13 mg/kg. This suggests that the use of OMF and microbes in karst areas not only promotes plant growth but also hinders plant absorption of heavy metal ions in the soil. In addition, through the collection of pot leachate, the detection of water chemistrycharacteristics, and the calculation of the calcite saturation index, it was found that the OMF method also induces certain carbon sink effects. The results provide a new way in which rationalise the use of OMFs in karst areas to alleviate soil heavy metal pollution and increase soil carbon sequestration.
文摘Research was done with the objective of evaluating the quality of water supplied to the potable water system in Hidalgo Del Parral, which comes from two main supply sources: wells from "Valle del Verano", which provide water to the east side of the city, and the Water Treatment Plant, which receives water from different mines and supplies the west side of the city. When this plant is overcome on its capacity of treatment, a part of the water from the mines is fed directly to the northwest part of the city. The metals lead (Pb), chromium (Cr), cadmium (Cd), zinc (Zn), and arsenic (As) were analyzed by atomic absorption (AA) technique, based on the United States Environmental Protection Agency (EPA) Method 7000B (Revision 2, February 2007). The digestion process was done according to the guidelines established in Method NMX-AA-051-SCFI-2001, Analysis of Water-Determination of Metals by Atomic Absorption, developed by the National Standardization Technical Committee for Environmental Protection (Mexico). The samples were collected from the following points: 13 wells and 2 re-pumping stations of "Valle del Verano", the inlet and outlet of the Water Treatment Plant, and domestic faucets. The east side of the city, supplied by the wells of "Valle del Verano", is metal-pollution free. The water that comes from the mines contains high concentrations of As, Zn, Cd and Pb, with levels that can get to 0.12, 32.6, 0.26 and 3.5 mg/L, respectively. This water pollution generated by mining can be concluded from the high levels found in the domestic samples in which, for several points, the concentrations exceed the parameters set by the current guideline. According to the results, it is vital to set a plan of remediation for the water that comes from the mines, because there is a great risk for health in the consumotion of this water.