目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算...目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算法,受初始值影响较大,对目标尺寸较单一的数据集聚类产生的锚点差异较小,无法充分体现网络多尺度输出的特点。针对上述问题,本文提出一种基于多尺度的目标检测锚点构造方法(multi-scale-anchor,MSA),将聚类产生的锚点根据数据集本身的特性进行尺度的缩放和拉伸,优化的锚点即保留原数据集的特点也体现了模型多尺度的优势。另外,本方法应用在训练的预处理阶段,不增加模型推理时间。最后,选取单阶段主流算法YOLO(You Only Look Once),在多个不同场景的红外或工业场景数据集上进行丰富的实验。结果表明,多尺度锚点优化方法MSA能显著提高小样本场景的检测精度。展开更多
煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对...煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对煤矿井下低照度、水雾和粉尘等环境因素导致的锚孔轮廓成像模糊的问题,采用IA(Image-Adaptive)-SimAM-YOLOv7-tiny网络对巷道待锚护孔位进行视觉识别,该网络能够自适应地增强图像亮度和对比度,恢复锚孔边缘的高频信息,并使模型重点关注锚孔特征,提高锚孔检测的成功率;②求解激光雷达和工业相机联合标定的外参矩阵,将图像检测的锚孔边界框通过透视投影关系生成锥形感兴趣区域(Region Of Interest,ROI),获得对应的目标点云团簇;③采用点云处理算法提取锚护孔位边界点云,获得孔位中心坐标及其法向量,并通过坐标深度差比较判断锚孔识别的正确性。文中搭建了锚杆台车机械臂钻孔定位系统,对算法自主定位的精度以及准确度进行验证,试验结果表明:IA-SimAM-YOLOv7-tiny模型的平均精度均值(Mean Average Precision,mAP)为87.3%,较YOLOv7-tiny模型提高了4.6%;提出的融合算法定位误差为3 mm,单锚孔情况下系统平均识别时间为0.77 s,与单一视觉方法相比,采用激光与视觉多源融合不仅可以降低环境和小样本训练对定位性能的影响,而且可以获得锚护孔位的法向量,为机械臂调整钻孔位姿实现精准锚固提供依据。展开更多
大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高,以致无法扩展到大规模数据的问题.其中,基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵,利用重构矩阵进行聚类,有效地降低...大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高,以致无法扩展到大规模数据的问题.其中,基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵,利用重构矩阵进行聚类,有效地降低了算法的时间和空间复杂度.然而,现有的方法忽视了锚点之间的差异,均等地看待所有锚点,导致聚类结果受到低质量锚点的限制.为定位更具有判别性的锚点,加强高质量锚点对聚类的影响,提出一种基于加权锚点的大规模多视图聚类算法(Multi-view clustering with weighted anchors,MVC-WA).通过引入自适应锚点加权机制,所提方法在统一框架下确定锚点的权重,进行锚图的构建.同时,为增加锚点的多样性,根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性.展开更多
文摘目标检测是计算机视觉领域的研究热点和基础任务,其中基于锚点(Anchor)的目标检测已在众多领域得到广泛应用。当前锚点选取方法主要面临两个问题:基于特定数据集的先验取值尺寸固定、面对不同场景泛化能力弱。计算锚框的无监督K-means算法,受初始值影响较大,对目标尺寸较单一的数据集聚类产生的锚点差异较小,无法充分体现网络多尺度输出的特点。针对上述问题,本文提出一种基于多尺度的目标检测锚点构造方法(multi-scale-anchor,MSA),将聚类产生的锚点根据数据集本身的特性进行尺度的缩放和拉伸,优化的锚点即保留原数据集的特点也体现了模型多尺度的优势。另外,本方法应用在训练的预处理阶段,不增加模型推理时间。最后,选取单阶段主流算法YOLO(You Only Look Once),在多个不同场景的红外或工业场景数据集上进行丰富的实验。结果表明,多尺度锚点优化方法MSA能显著提高小样本场景的检测精度。
文摘煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对煤矿井下低照度、水雾和粉尘等环境因素导致的锚孔轮廓成像模糊的问题,采用IA(Image-Adaptive)-SimAM-YOLOv7-tiny网络对巷道待锚护孔位进行视觉识别,该网络能够自适应地增强图像亮度和对比度,恢复锚孔边缘的高频信息,并使模型重点关注锚孔特征,提高锚孔检测的成功率;②求解激光雷达和工业相机联合标定的外参矩阵,将图像检测的锚孔边界框通过透视投影关系生成锥形感兴趣区域(Region Of Interest,ROI),获得对应的目标点云团簇;③采用点云处理算法提取锚护孔位边界点云,获得孔位中心坐标及其法向量,并通过坐标深度差比较判断锚孔识别的正确性。文中搭建了锚杆台车机械臂钻孔定位系统,对算法自主定位的精度以及准确度进行验证,试验结果表明:IA-SimAM-YOLOv7-tiny模型的平均精度均值(Mean Average Precision,mAP)为87.3%,较YOLOv7-tiny模型提高了4.6%;提出的融合算法定位误差为3 mm,单锚孔情况下系统平均识别时间为0.77 s,与单一视觉方法相比,采用激光与视觉多源融合不仅可以降低环境和小样本训练对定位性能的影响,而且可以获得锚护孔位的法向量,为机械臂调整钻孔位姿实现精准锚固提供依据。
文摘大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高,以致无法扩展到大规模数据的问题.其中,基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵,利用重构矩阵进行聚类,有效地降低了算法的时间和空间复杂度.然而,现有的方法忽视了锚点之间的差异,均等地看待所有锚点,导致聚类结果受到低质量锚点的限制.为定位更具有判别性的锚点,加强高质量锚点对聚类的影响,提出一种基于加权锚点的大规模多视图聚类算法(Multi-view clustering with weighted anchors,MVC-WA).通过引入自适应锚点加权机制,所提方法在统一框架下确定锚点的权重,进行锚图的构建.同时,为增加锚点的多样性,根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性.