期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
无锚点的遥感图像任意角度密集目标检测方法
被引量:
2
1
作者
杨治佩
丁胜
+1 位作者
张莉
张新宇
《计算机应用》
CSCD
北大核心
2022年第6期1965-1971,共7页
针对基于深度学习的遥感图像目标检测方法密集目标漏检率高、分类不准确的问题,建立了一种基于深度学习的无锚点的遥感图像任意角度的密集目标检测方法。首先采用CenterNet作为基线模型,经过主干网络提取特征,并改造原有检测器结构,即...
针对基于深度学习的遥感图像目标检测方法密集目标漏检率高、分类不准确的问题,建立了一种基于深度学习的无锚点的遥感图像任意角度的密集目标检测方法。首先采用CenterNet作为基线模型,经过主干网络提取特征,并改造原有检测器结构,即加入角度回归分支进行目标角度回归;然后提出一种基于非对称卷积的特征增强模块,并将主干网络提取到的特征图输入特征增强模块,从而增强目标的旋转不变性特征,消除由于目标的旋转、翻转带来的影响,进一步提升目标中心点、尺寸信息的回归精度。采用HourGlass-101作为主干网络时,该方法在DOTA数据集上的平均精度均值(mAP)比旋转区域候选网络(RRPN)提升了7.80个百分点,每秒处理帧数(FPS)提升了7.5;在自建数据集Ship3上,该方法的mAP比RRPN提升了8.68个百分点,FPS提升了6.5。结果表明,所提方法能获得检测精度和速度的平衡。
展开更多
关键词
深度学习
遥感图像
目标
检测
非对称卷积
无锚点目标检测
下载PDF
职称材料
基于自注意力机制与无锚点的仔猪姿态识别
被引量:
3
2
作者
许成果
薛月菊
+3 位作者
郑婵
侯文豪
郭景峰
王峡锐
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第14期166-173,共8页
在猪场养殖过程中,仔猪姿态识别对其健康状况和环境热舒适度监测有重要意义。仔猪个体较小,喜欢聚集、扎堆,且姿态随意性较大,给姿态识别带来困难。为此,该研究结合Transformer网络与无锚点目标检测头,提出了一种新的仔猪姿态识别模型Tr...
在猪场养殖过程中,仔猪姿态识别对其健康状况和环境热舒适度监测有重要意义。仔猪个体较小,喜欢聚集、扎堆,且姿态随意性较大,给姿态识别带来困难。为此,该研究结合Transformer网络与无锚点目标检测头,提出了一种新的仔猪姿态识别模型TransFree(Transformer+Anchor-Free)。该模型使用Swin Transformer作为基础网络,提取仔猪图像的局部和全局特征,然后经过一个特征增强模块(Feature Enhancement Module,FEM)进行多尺度特征融合并得到高分辨率的特征图,最后将融合后的特征图输入Anchor-Free检测头进行仔猪的定位和姿态识别。以广东佛山市某商业猪场拍摄的视频作为数据源,从12个猪栏的拍摄视频中选取9栏作为训练集,3栏作为测试集,训练集中仔猪的俯卧、侧卧和站立3类姿态总计19929个样本,测试集中3类姿态总计5150个样本。在测试集上,TransFree模型的仔猪姿态识别精度达到95.68%,召回率达到91.18%,F1-score达到93.38%;相较于CenterNet、Faster R-CNN和YOLOX-L目标检测网络,F1-score分别提高了2.32、4.07和2.26个百分点。该文提出的TransFree模型实现了仔猪姿态的高精度识别,为仔猪行为识别提供了技术参考。
展开更多
关键词
图像识别
模型
仔猪
姿态识别
Swin
Transformer
无锚点目标检测
下载PDF
职称材料
题名
无锚点的遥感图像任意角度密集目标检测方法
被引量:
2
1
作者
杨治佩
丁胜
张莉
张新宇
机构
武汉科技大学计算机科学与技术学院
智能信息处理与实时工业系统湖北省重点实验室(武汉科技大学)
武汉晴川学院计算机学院
出处
《计算机应用》
CSCD
北大核心
2022年第6期1965-1971,共7页
基金
湖北省自然科学基金资助项目(2018CFB195)。
文摘
针对基于深度学习的遥感图像目标检测方法密集目标漏检率高、分类不准确的问题,建立了一种基于深度学习的无锚点的遥感图像任意角度的密集目标检测方法。首先采用CenterNet作为基线模型,经过主干网络提取特征,并改造原有检测器结构,即加入角度回归分支进行目标角度回归;然后提出一种基于非对称卷积的特征增强模块,并将主干网络提取到的特征图输入特征增强模块,从而增强目标的旋转不变性特征,消除由于目标的旋转、翻转带来的影响,进一步提升目标中心点、尺寸信息的回归精度。采用HourGlass-101作为主干网络时,该方法在DOTA数据集上的平均精度均值(mAP)比旋转区域候选网络(RRPN)提升了7.80个百分点,每秒处理帧数(FPS)提升了7.5;在自建数据集Ship3上,该方法的mAP比RRPN提升了8.68个百分点,FPS提升了6.5。结果表明,所提方法能获得检测精度和速度的平衡。
关键词
深度学习
遥感图像
目标
检测
非对称卷积
无锚点目标检测
Keywords
deep learning
remote sensing image
object detection
asymmetric convolution
anchor-free object detection
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
基于自注意力机制与无锚点的仔猪姿态识别
被引量:
3
2
作者
许成果
薛月菊
郑婵
侯文豪
郭景峰
王峡锐
机构
华南农业大学电子工程学院(人工智能学院)
华南农业大学数学与信息学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第14期166-173,共8页
基金
广东省科技计划项目(2021A0505030058)
广东省普通高校重点领域专项(2020ZDZX1041)。
文摘
在猪场养殖过程中,仔猪姿态识别对其健康状况和环境热舒适度监测有重要意义。仔猪个体较小,喜欢聚集、扎堆,且姿态随意性较大,给姿态识别带来困难。为此,该研究结合Transformer网络与无锚点目标检测头,提出了一种新的仔猪姿态识别模型TransFree(Transformer+Anchor-Free)。该模型使用Swin Transformer作为基础网络,提取仔猪图像的局部和全局特征,然后经过一个特征增强模块(Feature Enhancement Module,FEM)进行多尺度特征融合并得到高分辨率的特征图,最后将融合后的特征图输入Anchor-Free检测头进行仔猪的定位和姿态识别。以广东佛山市某商业猪场拍摄的视频作为数据源,从12个猪栏的拍摄视频中选取9栏作为训练集,3栏作为测试集,训练集中仔猪的俯卧、侧卧和站立3类姿态总计19929个样本,测试集中3类姿态总计5150个样本。在测试集上,TransFree模型的仔猪姿态识别精度达到95.68%,召回率达到91.18%,F1-score达到93.38%;相较于CenterNet、Faster R-CNN和YOLOX-L目标检测网络,F1-score分别提高了2.32、4.07和2.26个百分点。该文提出的TransFree模型实现了仔猪姿态的高精度识别,为仔猪行为识别提供了技术参考。
关键词
图像识别
模型
仔猪
姿态识别
Swin
Transformer
无锚点目标检测
Keywords
image recognition
models
piglet
postures recognition
Swin Transformer
Anchor-Free target detection
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
无锚点的遥感图像任意角度密集目标检测方法
杨治佩
丁胜
张莉
张新宇
《计算机应用》
CSCD
北大核心
2022
2
下载PDF
职称材料
2
基于自注意力机制与无锚点的仔猪姿态识别
许成果
薛月菊
郑婵
侯文豪
郭景峰
王峡锐
《农业工程学报》
EI
CAS
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部