A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The disconti...A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.展开更多
We define the total energy-momenta for(4+1)-dimensional asymptotically anti-de Sitter spacetimes,which comes from the boundary terms at infinity in the integral form of the Weitzenbck formula.Then we prove the positiv...We define the total energy-momenta for(4+1)-dimensional asymptotically anti-de Sitter spacetimes,which comes from the boundary terms at infinity in the integral form of the Weitzenbck formula.Then we prove the positive energy theorem for such spacetimes,following Witten’s original argumentsfor the positive energy theorem in asymptotically flat spacetimes.展开更多
基金Partially Supported by a DST Research Project to RG(No.SR/FTP/MS-020/2010)
文摘A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.
基金supported by National Natural Science Foundation of China(Grant No.11171328)Fundamental Research Funds for the Central Universities of China(Grant No.210274087)
文摘We define the total energy-momenta for(4+1)-dimensional asymptotically anti-de Sitter spacetimes,which comes from the boundary terms at infinity in the integral form of the Weitzenbck formula.Then we prove the positive energy theorem for such spacetimes,following Witten’s original argumentsfor the positive energy theorem in asymptotically flat spacetimes.