Explosive events have been observed to occur consecutively in bursts at intermittent locations along theboundary near the opposite polarity. The aim of the present paper is to explore a possible mechanism to interpret...Explosive events have been observed to occur consecutively in bursts at intermittent locations along theboundary near the opposite polarity. The aim of the present paper is to explore a possible mechanism to interpret thisburst-like characteristic of explosive events. The 2D magnetohydrodynamic (MHD) numerical simulations with resistivityhave been carried out to reproduce the intermittent spatial-temporal magnetic reconnection events taking place along thelong, compressible current sheet. The observed density enhancements in previously published results have been verifiedto be associated to magnetic reconnection sites. Late observational evidences, which support present attempts, have alsobeen found, at least in morphological evolution of the consecutive explosive events.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos.40104006,40204010,40374056,and 40336053
文摘Explosive events have been observed to occur consecutively in bursts at intermittent locations along theboundary near the opposite polarity. The aim of the present paper is to explore a possible mechanism to interpret thisburst-like characteristic of explosive events. The 2D magnetohydrodynamic (MHD) numerical simulations with resistivityhave been carried out to reproduce the intermittent spatial-temporal magnetic reconnection events taking place along thelong, compressible current sheet. The observed density enhancements in previously published results have been verifiedto be associated to magnetic reconnection sites. Late observational evidences, which support present attempts, have alsobeen found, at least in morphological evolution of the consecutive explosive events.