在电力现货市场环境下,售电公司需要面向市场电价及用户负荷的双重不确定性,在日前申报的环节易造成额外购电成本。然而现有基于条件风险价值(conditional value at risk,CVaR)等随机优化方法的购电方案与风险管理策略中存在等概率缩减...在电力现货市场环境下,售电公司需要面向市场电价及用户负荷的双重不确定性,在日前申报的环节易造成额外购电成本。然而现有基于条件风险价值(conditional value at risk,CVaR)等随机优化方法的购电方案与风险管理策略中存在等概率缩减关键场景与主观进行置信度选值的问题,为此基于传统的中性风险模型及CVaR优化模型,引入基于K-means的场景聚类缩减方法,提出基于外推内插法的置信度选值优化方法,综合形成改进CVaR的售电公司日前申报优化模型及其求解策略。仿真算例结果验证了改进CVaR优化模型能有效降低售电公司的综合购电成本及潜在风险损失,并探究了在不同的风险厌恶程度与市场波动程度的情况下对日前申报优化策略的影响,体现了改进优化申报策略的适用性与鲁棒性。展开更多
文摘在电力现货市场环境下,售电公司需要面向市场电价及用户负荷的双重不确定性,在日前申报的环节易造成额外购电成本。然而现有基于条件风险价值(conditional value at risk,CVaR)等随机优化方法的购电方案与风险管理策略中存在等概率缩减关键场景与主观进行置信度选值的问题,为此基于传统的中性风险模型及CVaR优化模型,引入基于K-means的场景聚类缩减方法,提出基于外推内插法的置信度选值优化方法,综合形成改进CVaR的售电公司日前申报优化模型及其求解策略。仿真算例结果验证了改进CVaR优化模型能有效降低售电公司的综合购电成本及潜在风险损失,并探究了在不同的风险厌恶程度与市场波动程度的情况下对日前申报优化策略的影响,体现了改进优化申报策略的适用性与鲁棒性。