期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的日尺度短波净辐射气候资源遥感反演研究 被引量:6
1
作者 应王敏 刘晓洁 +4 位作者 房世峰 李秀娟 赖明 张旭振 吴骅 《资源科学》 CSSCI CSCD 北大核心 2020年第10期1998-2009,共12页
日尺度地表短波净辐射(DNSSR)是大部分陆面过程模型、全球环流模型、陆-气交换过程模型和各种水文模型的重要输入参数,在自然资源调查、生态环境监测、能量平衡研究等领域具有重要的研究意义和实用价值。本文通过匹配MODIS双星遥感观测... 日尺度地表短波净辐射(DNSSR)是大部分陆面过程模型、全球环流模型、陆-气交换过程模型和各种水文模型的重要输入参数,在自然资源调查、生态环境监测、能量平衡研究等领域具有重要的研究意义和实用价值。本文通过匹配MODIS双星遥感观测和FLUXNET日尺度地面观测数据,筛选出包含18个自变量总计15531对的有效样本,利用机器学习的随机森林方法构建了日尺度DNSSR遥感反演模型,并利用地面实测数据对模型结果进行了真实性检验。结果表明,构建的日尺度DNSSR遥感模型的偏差Bias为-0.1 W/m2,均方根误差RMSE为27.8W/m2,决定系数R2为0.90,表现出良好的精度。基于此过程,得到MODIS双星反演的DNSSR全球分布结果,并与不同季节下再分析ERA5数据扩展得到的DNSSR数据进行了对比,发现两者全球分布特征基本一致,且均与太阳能量随季节变化分布特点密切相关。为进一步证实验证的结果,将ERA5和地面站点实测数据作了进一步的对比,结果从侧面证实了本文构建的MODIS的DNSSR产品精度远高于ERA5的DNSSR,而且其产品空间分辨率也有了极大提升。研究结果证明,本文提出的基于MODIS双星观测与机器学习的日尺度DNSSR反演模型具有反演精度高、空间分辨率高、具备时间连续性等优点,能够有效移植至其他气候资源的遥感反演。 展开更多
关键词 气候资源 尺度地表短波辐射(dnssr) 机器学习 遥感 反演
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部