大数据对存储系统的可扩展性、性能和成本等方面提出了更高的要求。瓦记录(Shingled Magnetic Recording,SMR)硬盘由于存储密度高、价格便宜,正逐步被广泛应用于大数据存储系统。但是,SMR硬盘的随机写性能较差,与快速的基于闪存的固态硬...大数据对存储系统的可扩展性、性能和成本等方面提出了更高的要求。瓦记录(Shingled Magnetic Recording,SMR)硬盘由于存储密度高、价格便宜,正逐步被广泛应用于大数据存储系统。但是,SMR硬盘的随机写性能较差,与快速的基于闪存的固态硬盘(Solid State Drive,SSD)一起构成混合存储时可以显著提升性能。同时,基于写优化的日志结构合并(Log-Structured Merge,LSM)树的键值存储已被广泛应用于许多NoSQL系统,如BigTable,Cassandra和HBase等。因此,如何基于新型的SSD-SMR混合存储构建出高性能的LSM树键值存储系统是一个具有很大研究价值的问题。首先建立基于SSD-SMR混合存储的LSM树键值系统的性能模型,然后针对SSD和SMR的硬件特征以及LSM树键值存储的软件特点,设计了一套面向SSD-SMR混合存储进行性能优化的LSM树键值存储系统,并基于LevelDB实现了该系统。在仅仅使用0.4%~2%空间的SSD的情况下,所提方法可以使SSD-SMR混合存储方案比普通磁盘方案的随机写性能提高20%,随机读性能提高5倍。展开更多
具有高性能以及非易失特性的SCM(Storage Class Memory,存储级内存)技术逐渐成熟并开始运用到存储系统设计中,而传统的SSD仍然在存储容量上具有优势,为键值存储系统提供大容量存储的支持。现有键值存储系统不能充分发挥SCM与SSD混合存...具有高性能以及非易失特性的SCM(Storage Class Memory,存储级内存)技术逐渐成熟并开始运用到存储系统设计中,而传统的SSD仍然在存储容量上具有优势,为键值存储系统提供大容量存储的支持。现有键值存储系统不能充分发挥SCM与SSD混合存储架构的优势,需要对数据布局以及系统结构进行重新设计。针对SCM和SSD的特点,设计了基于SCM与SSD的混合式高效键值存储系统(SCM and SSD Hybrid Key-Valuestore,SSHKV)。SSHKV通过将键值存储中元数据信息存储到SCM中,将数据部分以日志方式存储到SSD中,实现性能与容量的兼顾。在SSD空间管理上,SSHKV采用逻辑空间放大策略,通过重映射TRIM指令释放的无效空间,减小了垃圾回收带来的数据迁移开销。SSHKV基于半异步半同步式IO模型实现,经过对比测试,SSHKV的随机写入性能相较于传统基于LSM-Tree的LevelDB提升了约20倍。展开更多
文摘大数据对存储系统的可扩展性、性能和成本等方面提出了更高的要求。瓦记录(Shingled Magnetic Recording,SMR)硬盘由于存储密度高、价格便宜,正逐步被广泛应用于大数据存储系统。但是,SMR硬盘的随机写性能较差,与快速的基于闪存的固态硬盘(Solid State Drive,SSD)一起构成混合存储时可以显著提升性能。同时,基于写优化的日志结构合并(Log-Structured Merge,LSM)树的键值存储已被广泛应用于许多NoSQL系统,如BigTable,Cassandra和HBase等。因此,如何基于新型的SSD-SMR混合存储构建出高性能的LSM树键值存储系统是一个具有很大研究价值的问题。首先建立基于SSD-SMR混合存储的LSM树键值系统的性能模型,然后针对SSD和SMR的硬件特征以及LSM树键值存储的软件特点,设计了一套面向SSD-SMR混合存储进行性能优化的LSM树键值存储系统,并基于LevelDB实现了该系统。在仅仅使用0.4%~2%空间的SSD的情况下,所提方法可以使SSD-SMR混合存储方案比普通磁盘方案的随机写性能提高20%,随机读性能提高5倍。
文摘具有高性能以及非易失特性的SCM(Storage Class Memory,存储级内存)技术逐渐成熟并开始运用到存储系统设计中,而传统的SSD仍然在存储容量上具有优势,为键值存储系统提供大容量存储的支持。现有键值存储系统不能充分发挥SCM与SSD混合存储架构的优势,需要对数据布局以及系统结构进行重新设计。针对SCM和SSD的特点,设计了基于SCM与SSD的混合式高效键值存储系统(SCM and SSD Hybrid Key-Valuestore,SSHKV)。SSHKV通过将键值存储中元数据信息存储到SCM中,将数据部分以日志方式存储到SSD中,实现性能与容量的兼顾。在SSD空间管理上,SSHKV采用逻辑空间放大策略,通过重映射TRIM指令释放的无效空间,减小了垃圾回收带来的数据迁移开销。SSHKV基于半异步半同步式IO模型实现,经过对比测试,SSHKV的随机写入性能相较于传统基于LSM-Tree的LevelDB提升了约20倍。