OBJECTIVE: To perform cloning of the gene encoding Chinese Schistosoma japonicum tropomyosin (SjcTM) and its expression in Escherichia coli. METHODS: SjcTM cDNA fragment, except for 14 amino acids at the amino terminu...OBJECTIVE: To perform cloning of the gene encoding Chinese Schistosoma japonicum tropomyosin (SjcTM) and its expression in Escherichia coli. METHODS: SjcTM cDNA fragment, except for 14 amino acids at the amino terminus, was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) with total RNA extracted from adult worms of S. japonicum. The RT-PCR product was cloned into T vector and sequenced. The SjcTM cDNA, derived from the constructed TA clone pGEM-SjcTM, was then subcloned into the expressing vector pBV220. After characterization by agarose gel electrophoresis, endonucleases digestion and PCR, the resultant recombinant plasmid was used for expression under the temperature-dependent condition. RESULTS: The RT-PCR product, cloned into a T vector, was sequenced and shown to be 96.5% identical at the nuclei acid level and 98.1% identical in deduced amino acid sequence to that of S. mansoni tropomyosin. The target DNA fragment was then subcloned into a prokaryotic vector pBV220. Induced expression in E. coli DH5alpha cells resulted in a constant level of recombinant protein production. The results of SDS-PAGE and Western blot revealed that the molecular weight of non-fusion recombinant protein (rSjcTM) was approximately 32 kDa and could be recognized specifically by a polyclonal antiserum specific for native S. japonicum tropomyosin (SjcTM). CONCLUSION: The engineering of the cDNA encoding S. japonicum tropomyosin and its bacterial expression was successfully made.展开更多
文摘OBJECTIVE: To perform cloning of the gene encoding Chinese Schistosoma japonicum tropomyosin (SjcTM) and its expression in Escherichia coli. METHODS: SjcTM cDNA fragment, except for 14 amino acids at the amino terminus, was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) with total RNA extracted from adult worms of S. japonicum. The RT-PCR product was cloned into T vector and sequenced. The SjcTM cDNA, derived from the constructed TA clone pGEM-SjcTM, was then subcloned into the expressing vector pBV220. After characterization by agarose gel electrophoresis, endonucleases digestion and PCR, the resultant recombinant plasmid was used for expression under the temperature-dependent condition. RESULTS: The RT-PCR product, cloned into a T vector, was sequenced and shown to be 96.5% identical at the nuclei acid level and 98.1% identical in deduced amino acid sequence to that of S. mansoni tropomyosin. The target DNA fragment was then subcloned into a prokaryotic vector pBV220. Induced expression in E. coli DH5alpha cells resulted in a constant level of recombinant protein production. The results of SDS-PAGE and Western blot revealed that the molecular weight of non-fusion recombinant protein (rSjcTM) was approximately 32 kDa and could be recognized specifically by a polyclonal antiserum specific for native S. japonicum tropomyosin (SjcTM). CONCLUSION: The engineering of the cDNA encoding S. japonicum tropomyosin and its bacterial expression was successfully made.