针对宁夏中部干旱带压砂西瓜田长期连作种植所产生的土壤退化、土壤养分含量降低、土壤真菌性病害增加、西瓜减产、品质下降等问题,从患病的西瓜植株上分离出致病菌-尖孢镰刀菌西瓜专化型(Fusarium oxysporum f.sp.niveum),从宁夏环香...针对宁夏中部干旱带压砂西瓜田长期连作种植所产生的土壤退化、土壤养分含量降低、土壤真菌性病害增加、西瓜减产、品质下降等问题,从患病的西瓜植株上分离出致病菌-尖孢镰刀菌西瓜专化型(Fusarium oxysporum f.sp.niveum),从宁夏环香山地区压砂瓜集中连片种植区采集健康土壤中分离筛选对西瓜枯萎病致病菌有抑菌效果的拮抗菌株,并对拮抗菌株的防病效果以及分类鉴定进行了研究。通过采用平板稀释法筛选出对目标靶具有拮抗作用的拮抗细菌。通过初筛选取8株对目标靶具有拮抗作用的细菌进一步进行复筛试验。经过数据分析,G-1的抑菌率最大,且与其他处理间存在显著性差异,筛选出对目标靶拮抗最强的拮抗菌为G-1。根据形态学观察、细菌生理生化鉴定和16 S r DNA序列的同源性分析,确定拮抗菌株G-1为萎缩芽孢杆菌(Bacillus atrophaeus)。展开更多
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated...Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization.展开更多
Ecological migration is the process of increasing the population density in the immigration area and transferring the ecological pressure from emigration area to immigration area. This process may result in significan...Ecological migration is the process of increasing the population density in the immigration area and transferring the ecological pressure from emigration area to immigration area. This process may result in significant changes in land use and land cover in the area of immigration and have an important effect on ecosystem services. Therefore, scientifically revealing the effects and differentiation mechanisms of ecological migration on ecosystem services is becoming an important issue related to the implementation of the national ecological migration strategy in China. This study employed the Hongsibu District as a typical example of ecological migration. Hongsibu District is located in the central Ningxia steppe and desert steppe areas. Remote sensing data covering five periods from the period before ecological migration in 1995 and after migration in 2000, 2005, 2010, and 2015 was used to measure the value of ecosystem services(ESV). A geographical detector model and the value of ecosystem services model were used to diagnose the dynamic mechanism of the effects of land use change on ecosystem services. The results showed that: 1) The development of large-scale ecological resettlement has caused the area of cultivated land and urbanized land area to increase significantly in the area of immigration, while the grass area decreased significantly. 2) The overall value of the Hongsibu ecosystem services increased in a form of a ‘V'. Among them, during the period of 1995–2005, the overall ESV decreased and had an annual rate of change of-0.67%. During the period of development 2005–2015, the ESV increased steadily, with an annual rate of change of 0.79%. 3) The proportion and total ESV in soil formation and protection, waste treatment, and biodiversity conservation of the Hongsibu District decreased from 57.61% in 1995 to 56.17% in 2015, indicating that the region's ecological regulation function slightly decreased. 4) The ESV in the Hongsibu District, showed a low distribution pattern of ecosystem services increasing from northeast to southwest, and the capacity of three townships, Hongsibu, Taiyangshan, and Liuquan, to provide ecosystem services gradually declined over time. The ecological service function of Xinzhuangji Township and Dahe Township gradually improved. 5) The sensitivity index of the ESV of each land use type was less than 1, indicating that the environment lacks flexibility in providing a strong ESV index in Hongsibu, which shows that the research results are reliable and believable. 6) During the study period, the decisive force of the change of land use on ecosystem services in Hongsibu District was: grassland(0.9934), climate regulation(0.9413), soil formation and protection(0.9321) and waste treatment(0.9241).展开更多
Field lysimeter method was employed to investigate the downward movement and leaching of N applied to summer corn (Zea may L.) on dryland soil in Beiling. A N-fertilizer (120 kg N hm-2) and a control treatment were ar...Field lysimeter method was employed to investigate the downward movement and leaching of N applied to summer corn (Zea may L.) on dryland soil in Beiling. A N-fertilizer (120 kg N hm-2) and a control treatment were arranged for the study. Soil solution was collected at depths of 20, 40, 60, 120 and 170 cm,while leachate was collected at the bottom (200 cm) of the lysimeter. The results showed that the downward movement of NO3-N in soil profile was greatly affected by rainfall pattern. The peak of leached NO3-N from both treatments coincided with the peak of the rainfall. In addition, leached NO3-N from both treatments and rainfall were significantly correlated (P<0.05). The amount of leached NO3-N was not great in the N-fertilizer treatment. The results also suggested that N fertilization could cause NO3-N contamination of groundwater during the rainy season.展开更多
One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regime...One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regimes were maintained by re-irrigating the seedlings at 36.2 mm (W1), 26.5 mm (W2), 20.2 mm (W3) and 18.1 mm (W4) treatments when the soil water content decreased to 7.56%, 5.79%, 4.44%, 3.23% in the respective treatments. Height, collar diameter, number of leaves and leaf area were highest (p 〈 0.01) for the seedlings irrigated at W1 levek Above-mentioned growth parameters did not differ between W1 and W2 treatments but the seedlings in W2 level had highest biomass per liter of water use (i.e., water use efficiency, WUE). Irrigation levels of W3 to W5 negatively affected seedling growth, biomass production and nutrient accumulation. Soil water availability below W2 level (i.e., 5.79%) caused an increase in percentage of root biomass to the total biomass of the seedling. However, there was a decrease in percentage of leaf dry biomass in W3 and W4 treatments and in percentage of stem dry biomass in the seedlings of W5 treatment. Seedlings in W5 treatment survived till at soil water potential of-1.96 MPa. Limitation of soil water availability in W3 and W4 treatments affected growth and biomass production of D. sissoo seedlings. W: level was best for growth and biomass production in which water use efficiency was highest. Therefore, better growth and biomass production of D. sissoo seedlings could be obtained by irrigating the seedlings at soil water content of≥5.79% in the loamy sand soil.展开更多
Soil and water conservation is essential for sustaining food production and for preserving the environment in arid and semi arid lands (ASALs) where conditions for agriculture and other land use systems are often ha...Soil and water conservation is essential for sustaining food production and for preserving the environment in arid and semi arid lands (ASALs) where conditions for agriculture and other land use systems are often harsh and unpredictable. The ASALs of Algeria are an important source of a variety of non wood forest products like Stipa tenacissima L. plant (esparto grass). This research was conducted to determine the effects of different low concentration (〈 I%) polyacrylaJnide, Stipa tenacissima L. fiber (esparto grass fibers) and its mixtures with the polymer at water retention in arid and semi arid soil. All samples are characterized by infrared spectroscopy, X-ray Diffractometry, thermal analysis TG DSC and scanning electron micrographs (SEM). The results showed that polymer blend in soil could improve better soil physical proprieties decreased evaporation and increase water retention in arid soils compared with application of any other blend at the same concentration. The use of Polyacrylamide-Cellulose blend appears to promise for reducing the labor cost of irrigation at arid and semi-arid soils, and offers safe and environmentally friendly inexpensive materials. The importance of Polyacrylamide-Cellulose blends to alleviate poor physical properties and retain water in these arid regions to sustain plant growth.展开更多
The performance of a I-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP...The performance of a I-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP) during the non-growing period, when the ground surface was covered with bare soil. Comparisons between simulated and observed soil surface energy balance components as well as soil temperatures and water contents were conducted to validate the soil model. Results show that the soil model could produce good simulations of soil surface temperature, net radiation flux, and sensible heat flux against observed values with the RMSE of 1.54℃, 7.71 W m^-2, and 27.79 W m^-2, respectively. The simulated volumetric soil water content is close to the observed values at various depths with the maximal difference between them being 0.03. Simulated latent heat and ground heat fluxes have relatively larger errors in relative to net radiation and sensible heat flux. In conclusion, the soil model has good capacity to simulate the bare soil surface energy balance at the Tongyu cropland station and needs to be further tested in longer period and at more sites in semiarid areas.展开更多
The rates of soil N mineralization at soil depths of 0-15, 15-30, 30-45 and45-60 cm and moisture regimes were measured at three sand-fixation plantations of Pinus sylvestrisvar. mongolica by laboratory aerobic incubat...The rates of soil N mineralization at soil depths of 0-15, 15-30, 30-45 and45-60 cm and moisture regimes were measured at three sand-fixation plantations of Pinus sylvestrisvar. mongolica by laboratory aerobic incubation method. The results showed that average rates ofsoil net N-mineralization across soil depth varied from 1.06 to 7.52 mg · kg^(-1)·month^(-1) atsoil depths from 0 to 60 cm. Statistical analyses indicated that the effects of different soildepths, moistures and their interactions on net N-mineralization rates were significant (P < 0.05).The net N-mineralization rates significantly decreased with increasing soil depths and at depth 0-15cm accounted for 60.52% of that at depth of 0-60 cm. There was no difference in soil netN-mineralization rates between half and fully-saturated water treatments, however these rates weresubstantially higher than that without water treatment (P < 0.05). The factors influencing Nmineralization process have to be studied further in these semiarid pine ecosystems.展开更多
文摘针对宁夏中部干旱带压砂西瓜田长期连作种植所产生的土壤退化、土壤养分含量降低、土壤真菌性病害增加、西瓜减产、品质下降等问题,从患病的西瓜植株上分离出致病菌-尖孢镰刀菌西瓜专化型(Fusarium oxysporum f.sp.niveum),从宁夏环香山地区压砂瓜集中连片种植区采集健康土壤中分离筛选对西瓜枯萎病致病菌有抑菌效果的拮抗菌株,并对拮抗菌株的防病效果以及分类鉴定进行了研究。通过采用平板稀释法筛选出对目标靶具有拮抗作用的拮抗细菌。通过初筛选取8株对目标靶具有拮抗作用的细菌进一步进行复筛试验。经过数据分析,G-1的抑菌率最大,且与其他处理间存在显著性差异,筛选出对目标靶拮抗最强的拮抗菌为G-1。根据形态学观察、细菌生理生化鉴定和16 S r DNA序列的同源性分析,确定拮抗菌株G-1为萎缩芽孢杆菌(Bacillus atrophaeus)。
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2007CB106804)the International S&T Cooperation Program (ISTCP) of China (No. 2006DFA31070)the International Foundation for Sciences(No. C/3313-2)
文摘Cropland (CP),native grassland (NG) and two shrub land treatments which were converted from cropland in 1985:seabuckthorn (Hippophae rhamnoides L.) (ST),and branchytamarisk (Tamarix ramosissima) (BT) were investigated to evaluate effects of land use conversion on soil organic carbon (SOC) and soil nutrients in the semi-arid region of the Loess Plateau of China.Total organic carbon (TOC),light fraction organic carbon (LFOC),heavy fraction organic carbon (HFOC),total N (TN),nitrate nitrogen (NO 3-N) and nitrite nitrogen (NO 2-N),ammonium nitrogen (NH + 4-N),total P,and available P (AP) were measured.The results showed that SOC in NG,ST and BT were 12.7%,27.7% and 34.8% higher than that of the cropland,respectively.LFOC,light fraction (LF) dry matter,ratio of TOC to TN (C/N) and the ratio of TOC to AP (C/P) were higher in the shrub land or native grassland than in the cropland.Cropland had the highest TN,the sum of NO 3-N and NO 2-N,TP and AP due to the use of chemical fertilizers.TOC significantly correlated with LFOC,HFOC and C/N.LFOC significantly correlated with dry matter of the LF and C/N.TN,the sum of NO 3-N and NO 2-N and AP were significantly negatively correlated with TOC and LFOC.Therefore,land use conversion from cropland to shrub land,or maybe grassland,contributed to SOC sequestration and improved soil nutrients stabilization.
基金Under the auspices of the National Natural Science Foundation of China(No.41461039)
文摘Ecological migration is the process of increasing the population density in the immigration area and transferring the ecological pressure from emigration area to immigration area. This process may result in significant changes in land use and land cover in the area of immigration and have an important effect on ecosystem services. Therefore, scientifically revealing the effects and differentiation mechanisms of ecological migration on ecosystem services is becoming an important issue related to the implementation of the national ecological migration strategy in China. This study employed the Hongsibu District as a typical example of ecological migration. Hongsibu District is located in the central Ningxia steppe and desert steppe areas. Remote sensing data covering five periods from the period before ecological migration in 1995 and after migration in 2000, 2005, 2010, and 2015 was used to measure the value of ecosystem services(ESV). A geographical detector model and the value of ecosystem services model were used to diagnose the dynamic mechanism of the effects of land use change on ecosystem services. The results showed that: 1) The development of large-scale ecological resettlement has caused the area of cultivated land and urbanized land area to increase significantly in the area of immigration, while the grass area decreased significantly. 2) The overall value of the Hongsibu ecosystem services increased in a form of a ‘V'. Among them, during the period of 1995–2005, the overall ESV decreased and had an annual rate of change of-0.67%. During the period of development 2005–2015, the ESV increased steadily, with an annual rate of change of 0.79%. 3) The proportion and total ESV in soil formation and protection, waste treatment, and biodiversity conservation of the Hongsibu District decreased from 57.61% in 1995 to 56.17% in 2015, indicating that the region's ecological regulation function slightly decreased. 4) The ESV in the Hongsibu District, showed a low distribution pattern of ecosystem services increasing from northeast to southwest, and the capacity of three townships, Hongsibu, Taiyangshan, and Liuquan, to provide ecosystem services gradually declined over time. The ecological service function of Xinzhuangji Township and Dahe Township gradually improved. 5) The sensitivity index of the ESV of each land use type was less than 1, indicating that the environment lacks flexibility in providing a strong ESV index in Hongsibu, which shows that the research results are reliable and believable. 6) During the study period, the decisive force of the change of land use on ecosystem services in Hongsibu District was: grassland(0.9934), climate regulation(0.9413), soil formation and protection(0.9321) and waste treatment(0.9241).
文摘Field lysimeter method was employed to investigate the downward movement and leaching of N applied to summer corn (Zea may L.) on dryland soil in Beiling. A N-fertilizer (120 kg N hm-2) and a control treatment were arranged for the study. Soil solution was collected at depths of 20, 40, 60, 120 and 170 cm,while leachate was collected at the bottom (200 cm) of the lysimeter. The results showed that the downward movement of NO3-N in soil profile was greatly affected by rainfall pattern. The peak of leached NO3-N from both treatments coincided with the peak of the rainfall. In addition, leached NO3-N from both treatments and rainfall were significantly correlated (P<0.05). The amount of leached NO3-N was not great in the N-fertilizer treatment. The results also suggested that N fertilization could cause NO3-N contamination of groundwater during the rainy season.
文摘One-year-old seedlings of Dalbergia sissoo from a single provenance were planted in non-weighing lysimeter tanks in July 1998 with a view to provide optimize irrigation parameters in desert areas. Varying water regimes were maintained by re-irrigating the seedlings at 36.2 mm (W1), 26.5 mm (W2), 20.2 mm (W3) and 18.1 mm (W4) treatments when the soil water content decreased to 7.56%, 5.79%, 4.44%, 3.23% in the respective treatments. Height, collar diameter, number of leaves and leaf area were highest (p 〈 0.01) for the seedlings irrigated at W1 levek Above-mentioned growth parameters did not differ between W1 and W2 treatments but the seedlings in W2 level had highest biomass per liter of water use (i.e., water use efficiency, WUE). Irrigation levels of W3 to W5 negatively affected seedling growth, biomass production and nutrient accumulation. Soil water availability below W2 level (i.e., 5.79%) caused an increase in percentage of root biomass to the total biomass of the seedling. However, there was a decrease in percentage of leaf dry biomass in W3 and W4 treatments and in percentage of stem dry biomass in the seedlings of W5 treatment. Seedlings in W5 treatment survived till at soil water potential of-1.96 MPa. Limitation of soil water availability in W3 and W4 treatments affected growth and biomass production of D. sissoo seedlings. W: level was best for growth and biomass production in which water use efficiency was highest. Therefore, better growth and biomass production of D. sissoo seedlings could be obtained by irrigating the seedlings at soil water content of≥5.79% in the loamy sand soil.
文摘Soil and water conservation is essential for sustaining food production and for preserving the environment in arid and semi arid lands (ASALs) where conditions for agriculture and other land use systems are often harsh and unpredictable. The ASALs of Algeria are an important source of a variety of non wood forest products like Stipa tenacissima L. plant (esparto grass). This research was conducted to determine the effects of different low concentration (〈 I%) polyacrylaJnide, Stipa tenacissima L. fiber (esparto grass fibers) and its mixtures with the polymer at water retention in arid and semi arid soil. All samples are characterized by infrared spectroscopy, X-ray Diffractometry, thermal analysis TG DSC and scanning electron micrographs (SEM). The results showed that polymer blend in soil could improve better soil physical proprieties decreased evaporation and increase water retention in arid soils compared with application of any other blend at the same concentration. The use of Polyacrylamide-Cellulose blend appears to promise for reducing the labor cost of irrigation at arid and semi-arid soils, and offers safe and environmentally friendly inexpensive materials. The importance of Polyacrylamide-Cellulose blends to alleviate poor physical properties and retain water in these arid regions to sustain plant growth.
基金supported by the National Basic Research Program of China under Grant 2009CB723904
文摘The performance of a I-D soil model in a semiarid area of North China was investigated using observational data from a cropland station at the Tongyu reference site of the Coordinated Enhanced Observing Period (CEOP) during the non-growing period, when the ground surface was covered with bare soil. Comparisons between simulated and observed soil surface energy balance components as well as soil temperatures and water contents were conducted to validate the soil model. Results show that the soil model could produce good simulations of soil surface temperature, net radiation flux, and sensible heat flux against observed values with the RMSE of 1.54℃, 7.71 W m^-2, and 27.79 W m^-2, respectively. The simulated volumetric soil water content is close to the observed values at various depths with the maximal difference between them being 0.03. Simulated latent heat and ground heat fluxes have relatively larger errors in relative to net radiation and sensible heat flux. In conclusion, the soil model has good capacity to simulate the bare soil surface energy balance at the Tongyu cropland station and needs to be further tested in longer period and at more sites in semiarid areas.
基金This paper was supported by National Natural Science Foundation of China (30471377), the Chinese Academy of Sciences (Knowledge Innovation Project KZCX3-SW-418), and the Institute of Applied Ecology of Chinese Academy of Sciences (SLYQY0409).
文摘The rates of soil N mineralization at soil depths of 0-15, 15-30, 30-45 and45-60 cm and moisture regimes were measured at three sand-fixation plantations of Pinus sylvestrisvar. mongolica by laboratory aerobic incubation method. The results showed that average rates ofsoil net N-mineralization across soil depth varied from 1.06 to 7.52 mg · kg^(-1)·month^(-1) atsoil depths from 0 to 60 cm. Statistical analyses indicated that the effects of different soildepths, moistures and their interactions on net N-mineralization rates were significant (P < 0.05).The net N-mineralization rates significantly decreased with increasing soil depths and at depth 0-15cm accounted for 60.52% of that at depth of 0-60 cm. There was no difference in soil netN-mineralization rates between half and fully-saturated water treatments, however these rates weresubstantially higher than that without water treatment (P < 0.05). The factors influencing Nmineralization process have to be studied further in these semiarid pine ecosystems.