A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water...A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.展开更多
This study presents a detailed analysis of the asymmetric relationships between the warm/cold phase of the El Ni?o–Southern Oscillation and the typical flood/drought years in summer over Chongqing.Furthermore,its und...This study presents a detailed analysis of the asymmetric relationships between the warm/cold phase of the El Ni?o–Southern Oscillation and the typical flood/drought years in summer over Chongqing.Furthermore,its underpinning mechanisms are also explored.The results show that:(1)El Ni?o and La Ni?a have an asymmetric influence on summer precipitation in the following year over Chongqing.Generally,the composite atmospheric circulation anomalies for El Ni?o years are consistent with the composite results for typical flood years in summer over Chongqing,which indicates a tight link between typical flood years in summer over Chongqing and El Ni?o events.However,the relationship between typical drought years in summer over Chongqing and La Ni?a events is not significant.(2)From winter to the following summer,the extent of positive SST anomalies in the equatorial eastern Pacific associated with typical flood years in summer over Chongqing shrinks,whereas in the tropical Indian Ocean,the extent slightly expands.This trend indicates that the impact of El Ni?o on typical flood years in summer over Chongqing is maintained through the‘relay effect’of SSTs in the tropical Indian Ocean,which is the result of a lagged response of positive SST anomalies in the tropical Indian Ocean to El Ni?o events in winter.展开更多
Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–...Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–2011.Further,the associated atmospheric circulation and SST anomalies(SSTAs)were explored to understand the mechanisms of dry-and wet-year cases based on an interannual time scale.The correlation,Morlet wavelet power spectrum,and composite analysis methods were employed.The results showed that the JFM standardized rainfall anomaly time series exhibited significant time scales of variability at interannual(2–8 years)and quasidecadal(8–12 years).During dry years,anomalous anticyclonic northeasterly flow originating from western tropical Indian and southeast trades from the Indian Ocean to the southeast were associated with subsiding dry air,which resulted in suppression of rainfall as observed.In the typical wet-year cases,meanwhile,anomalous westerlies from the tropical and southeast Atlantic were strengthened over the Congo basin,delivering more precipitation to the region.Significant correlation was exhibited over the western tropical and southeast Indian Ocean,as well as the southeast and tropical Atlantic Ocean.These SSTA patterns favored atmospheric general circulation anomalies that were closely related to JFM rainfall over Tanzania.展开更多
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2003AA209030) High Technology Research and Development Program of Jiangsu Province (No. BG2004320) the National Natural Science Foundation
文摘A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.
基金This research was financially supported by the General Project of Technical Innovation and Application Demonstration in Chongqing,China[grant number cstc2018jscx-msybX0165]the Special Fund for the Development of Key Technology in Weather Forecasting of the China Meteorological Administration[grant number YBGJXM(2018)04-08]the National Natural Science Foundation of China[grant number 41875111].
文摘This study presents a detailed analysis of the asymmetric relationships between the warm/cold phase of the El Ni?o–Southern Oscillation and the typical flood/drought years in summer over Chongqing.Furthermore,its underpinning mechanisms are also explored.The results show that:(1)El Ni?o and La Ni?a have an asymmetric influence on summer precipitation in the following year over Chongqing.Generally,the composite atmospheric circulation anomalies for El Ni?o years are consistent with the composite results for typical flood years in summer over Chongqing,which indicates a tight link between typical flood years in summer over Chongqing and El Ni?o events.However,the relationship between typical drought years in summer over Chongqing and La Ni?a events is not significant.(2)From winter to the following summer,the extent of positive SST anomalies in the equatorial eastern Pacific associated with typical flood years in summer over Chongqing shrinks,whereas in the tropical Indian Ocean,the extent slightly expands.This trend indicates that the impact of El Ni?o on typical flood years in summer over Chongqing is maintained through the‘relay effect’of SSTs in the tropical Indian Ocean,which is the result of a lagged response of positive SST anomalies in the tropical Indian Ocean to El Ni?o events in winter.
基金This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[XDA20060501]the National Natural Science Foundatin of China[91637208].
文摘Based on site-observation data,NCEP–NCAR reanalysis data,and Climatic Research Unit gridded data,the rainfall variability over Tanzania during late austral summer(January–March,JFM)was analyzed for the period 1961–2011.Further,the associated atmospheric circulation and SST anomalies(SSTAs)were explored to understand the mechanisms of dry-and wet-year cases based on an interannual time scale.The correlation,Morlet wavelet power spectrum,and composite analysis methods were employed.The results showed that the JFM standardized rainfall anomaly time series exhibited significant time scales of variability at interannual(2–8 years)and quasidecadal(8–12 years).During dry years,anomalous anticyclonic northeasterly flow originating from western tropical Indian and southeast trades from the Indian Ocean to the southeast were associated with subsiding dry air,which resulted in suppression of rainfall as observed.In the typical wet-year cases,meanwhile,anomalous westerlies from the tropical and southeast Atlantic were strengthened over the Congo basin,delivering more precipitation to the region.Significant correlation was exhibited over the western tropical and southeast Indian Ocean,as well as the southeast and tropical Atlantic Ocean.These SSTA patterns favored atmospheric general circulation anomalies that were closely related to JFM rainfall over Tanzania.