A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water...A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.展开更多
Wheat grown under rain-fed conditions is often affected by drought worldwide. Future projections from a climate simulation model predict that the combined effects of increasing temperature and changing rainfall patter...Wheat grown under rain-fed conditions is often affected by drought worldwide. Future projections from a climate simulation model predict that the combined effects of increasing temperature and changing rainfall patterns will aggravate this drought scenario and may significantly reduce wheat yields unless appropriate varieties are adopted. Wheat is adapted to a wide range of environments due to the diversity in its phenology genes. Wheat phenology offers the opportunity to fight against drought by modifying crop developmental phases according to water availability in target environments. This review summa- rizes recent advances in wheat phenology research, including vernalization (Vrn), photoperiod (Ppd), and also dwarfing (Rht) genes. The alleles, haplotypes, and copy number variation identified for Vrn and Ppd genes respond differently in different climatic conditions, and thus could alter not only the development phases but also the yield. Compared with the model plant Arabidopsis, more phenology genes have not yet been identified in wheat; quantifying their effects in target environments would benefit the breeding of wheat for improved drought tolerance. Hence, there is scope to maximize yields in water-limited envi-ronments by deploying appropriate phenology gene combinations along with Rht genes and other important physiological traits that are associated with drought resistance.展开更多
Symbiotic and phenotypic characteristics of thirty rhiobial isolates obtained from root nodules of two cowpea (Vigna unguiculata L. Walp) cultivars that grown in different sites of Fezzan (Southern part of Libya) ...Symbiotic and phenotypic characteristics of thirty rhiobial isolates obtained from root nodules of two cowpea (Vigna unguiculata L. Walp) cultivars that grown in different sites of Fezzan (Southern part of Libya) were studied. Cultural characteristics and cross-nodulation with Arachis hypogega and Faidherbia albida showed that they were slow-growing rhizobia. Each isolate was found to coexist with non-symbiotic bacteria similar in their cultural characteristics to fast-growing rhizobia. All isolates formed symbiosis with the test plants, but different in their nitrogen-fixation efficiency. Numerical analysis of phenotypic characteristics showed that at boundary level of 70% average similarity, the isolates formed four distinguished groups and two isolates remained separate. Most isolates exhibited wide tolerance to acidity, alkalinity and extreme temperatures. They also resistant to some heavy metals such as mercury, copper, zinc, lead, cadmium and aluminum at low concentrations and antibiotics like polymyxin, colistin, bacitracin and nalidixic acid. Isolates displayed different response to salinity ranging from sensitive, which unable to grow in 1% NaCI to resistant and grow at 2% NaCl or above. Urea was hydrolyzed by most of them and carbohydrates utilizations were different. Sucrose and maltose were metabolized by most of the test isolates, whereas, monosaccharide and sugar alcohols were poorly utilized.展开更多
With the slowdown of China economy during 2011-2015, tobacco growing areas were compressing year by year.At the same time, because of the decrease of potassium to chlorine ratio, Chifeng tobacco leaves were no longer ...With the slowdown of China economy during 2011-2015, tobacco growing areas were compressing year by year.At the same time, because of the decrease of potassium to chlorine ratio, Chifeng tobacco leaves were no longer as high quality supplying materials in cigarettes of Shanghai Tobacco (Group). And thus, the allocation amount of Chifeng tobacco leaves were reduced. It is necessary to highlight local tobacco characteristics and improve tobacco quality for sustainable development. This research, therefore, reviewed tobacco planting, natural characters, potassium/chlorine rate and proposed suggestions.展开更多
A two-year on-farm study was carried out at Eglime in the moist savanna (MS) and Ouake in the dry savanna (DS) of Benin to evaluate the contribution of inoculation of dual-purpose soybean varieties to grain yield ...A two-year on-farm study was carried out at Eglime in the moist savanna (MS) and Ouake in the dry savanna (DS) of Benin to evaluate the contribution of inoculation of dual-purpose soybean varieties to grain yield of upland NERICA rice fertilized with low N level. In 2005, four dual-purpose, promiscuous soybean varieties (cv. TGx1440-IE; TG×1448-2E; TG×1019-2EB; and TG×1844-18E), and a popular improved variety (cv. Jupiter) were sown in 12 farmer fields with and without Bradyrhizobium japonicum inoculation. There was also land which was left fallow that acted as the control. In 2006, upland interspecific rice (NERICA 1) was sown in all the plots and supplied with 15 kg N haL. Dry matter yield, N accumulation, and net N-balance were significantly enhanced by over 40% with inoculation of cv. TG× 1844-18E than non-inoculation in the DS in comparison to other cultivars. There were no significant effects of inoculation of previous soybean cultivars on soybean grain yield and on the succeeding NERICA rice yield. Averaged over inoculation, previous cv. TG× 1019-2EB plots supplied with only 15 kg N hal gave the highest grain yield, more than twice the yield of control plots in the DS, possibly because of significant production of higher tillers, panicles and harvest index than the other cultivars; and it could be recommended for upland rice-based system for NERICA production.展开更多
The effects of two culture systems, conventional and no-till combined the previous crop (lentil and wheat) on soil properties were studied in the experimental site of the station Technical Institute for Field Crops ...The effects of two culture systems, conventional and no-till combined the previous crop (lentil and wheat) on soil properties were studied in the experimental site of the station Technical Institute for Field Crops (ITGC) Setif (Algeria) during the crop year 2011/2012. The results indicate that the no-till system affects positively the variables of soil properties and the organic matter has a rate of 2.89% compared to 2.44% in conventional tillage. If the conventional system has an infiltration of moisture relatively higher than that observed for no-till throughout the cycle, the no-tillage is distinguished by a higher storage of moisture at the end of cycle wheat cultivation. The results also indicate that the density (1.44 g/cm), permeability (22.79 cm/h) and soil compaction (12.51 kg/cm) in no-till were significantly higher compared to conventional tillage 1.35 g/cm, 14.13 cm/h, 7.40 kg/cm, respectively.展开更多
Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net pri...Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net primary production of a 25-year-old Pinus sylvestris L. (Scots pine) plantation, in a semi-arid region of Mongolia. The above-ground biomass of sample trees was divided into stem wood, stem bark, live branches, dead branches and needles. Total biomass for the stand was only 18.03 Mg ha1, of which 47.6% was found in stem wood, 25.8% in live branches and 14.8% in needles. The growth rate of the Scots pine plantation in the study region was relatively low compared with other regions. In the study area, it was observed that the rate of biomass accumulation in the plantation was very slow; this can be explained by very limited growing conditions and intensive crown closure. The results from this study indicate that it may be necessary to carry out thinning to increase biomass production by reducing competition between trees in the Scotch pine plantation.展开更多
In this study, four combinations of crops: rice (C), rice-maize (MCSI), rice-cassava (MCS2) and rice-maize-cassava (MCS3) with 3 m × 3 m each plots at two field areas--Saptosari and Tanjungsari were obse...In this study, four combinations of crops: rice (C), rice-maize (MCSI), rice-cassava (MCS2) and rice-maize-cassava (MCS3) with 3 m × 3 m each plots at two field areas--Saptosari and Tanjungsari were observed. Both field areas are located in Gunungkidul district, South-Central of Java Island, with that 93% at those areas are 185 m to 500 m above sea level and high proportion of multiple cropping systems (MCS). The aim of this study was to investigate the effect of different cropping method on growth, crop index and yield response to water of rice in rainfed agriculture. Mathematical models were developed to describe rice growth. The rice height was followed monomolecular function and the number of tillers followed exponential polynomial function. Crop index was calculated from climate data during plant growth phase. And yield response to water was calculated from actual evapotranspiration (ETa) and the maximum evapotranspiration (ETm). The results showed that the height of rice was not significantly different between each combination (P 〉 0.05). Number of tillers was also not significant (P 〉 0.05). However, monoculture treatment had more number of tillers than rice in MCS. Crop index of rice at Saptosari was higher than at Tanjungsari. Based on the calculation of evapotranspiration (ET), water deficit at initial was less than at mid-season (ETa 〈 ETm) and affected water stress. Statistical analysis showed that cropping methods did not significantly affect rice growth and yield (P 〉 0.05).展开更多
The region of Tlemcen is situated in the north-west of Algeria. The aridity of the climate had lead to the development of the matorral, a state of degradation of the Mediterranean, and the composed xerophytes plants s...The region of Tlemcen is situated in the north-west of Algeria. The aridity of the climate had lead to the development of the matorral, a state of degradation of the Mediterranean, and the composed xerophytes plants such as doum and diss, had been found. Chamaerops humilis, xerophyte plant, with special morphologic and botanic character presents a resistance of these climatic. The authors have proposed study of fauna closly linked to this plant. A faunistic inventory was realized in the Mansourah area (region of Tlemcen). Four stations have been described. Collecting sample was performed during June 2003-Mar. 2004, replying on sixteen (16) prelevements. The number of species were estimated of about 136, in which 111 are Arthropoda, the Entomofauna represented by 97 species and the other inventory are Arachnida by 8 species and Myriapoda by 6 species. 18 species are related to Gastropoda. The vertebrates are few. The importance of different groups' recolted on the Chamaerops humilis in the four stations is done particular to the insects. Analysis factorial correspondence (A.F.C) show different grouping of animal species.展开更多
The parasitic weed Striga poses a serious threat to cereal production in sub-Saharan Africa. For many years, technological packages for the control of this weed were proposed and implemented on farmers' fields. A sur...The parasitic weed Striga poses a serious threat to cereal production in sub-Saharan Africa. For many years, technological packages for the control of this weed were proposed and implemented on farmers' fields. A survey was carried out in farmers' fields in 2010/201l cropping season in selected dryland areas of Tanzania to: (a) determine the Striga plant counts, number of capsules/Striga plant and agronomic practices used by farmers to control Striga; and (b) evaluate the relationship between Striga reproduction, soil chemical characteristics and agronomic practices. Soil samples at 0-20 cm depth were collected from 20 different farmers' fields. The soil samples were analyzed for pH, organic carbon, N, P and K. Results showed that there was low adoption of recommended Striga control methods. Regression analysis of agronomic practices and soil chemical characteristics revealed a positive improvement of soil N and organic carbon and reduction of soil P and K content as one shifted from sole planting to intercropping. The results showed that potassium was highly positively related to number of capsules/Striga plant. There was a reduction in the number of capsules/plant as one moved from sole planting to intercropping. Based on these findings, K in the Striga infested in soils positively influenced Striga reproduction and seed bank replenishment, hence high soil K levels may lead to high Striga incidence.展开更多
Aims In dry tropical forests,herbaceous species may have dormancy mechanisms and form persistent and transient seed banks in the soil.Evolutionarily acquired,these mechanisms are efficient for the establishment and su...Aims In dry tropical forests,herbaceous species may have dormancy mechanisms and form persistent and transient seed banks in the soil.Evolutionarily acquired,these mechanisms are efficient for the establishment and survival of these herbs,especially in forests with unpredictable climates,such as the Caatinga.Thus,our objective was to verify whether the studied herbaceous species adopt the physical dormancy mechanism and how these natural barriers are overcome,to understand the temporal dynamics existing in the soil seed bank from a Brazilian dry tropical forest.Methods Seeds of five native herbaceous species from the Caatinga forests were selected and submitted to pre-germinative treatments for verifying the presence of physical dormancy.We collected soil samples in the rainy and dry seasons for four consecutive years and monitored the emergence of the selected herbaceous in the greenhouse.We verified the differences in germination and seed bank emergence in the soil by generalized linear models.Important Findings The presence and absence of physical dormancy were observed in seeds from Caatinga herbaceous species.We found intraspecific and interspecific differences in the herbaceous emergence from soil seed banks between years and climatic seasons.In perennial herbs,consecutive lack of emergence between seasons and years was frequent,which suggests a direct relationship with the mechanism of physical dormancy and the environmental conditions necessary to overcome integument barriers.In these species,seed dimorphism and dormancy may confer additional advantages to their survival.Moreover,presenting intermediate levels of physical dormancy in an annual species may be an evolutionary adjustment to rainfall unpredictability.In contrast,we found that the annual herb without dormancy is more sensitive to seasonal and interannual climate changes,as evidenced by the increase and significant reduction of its emergence in the soil seed bank.These differences acquired evolutionarily are advantageous for the establishment of herbaceous populations,mainly in semiarid regions with an unpredictable climate.展开更多
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2003AA209030) High Technology Research and Development Program of Jiangsu Province (No. BG2004320) the National Natural Science Foundation
文摘A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.
文摘Wheat grown under rain-fed conditions is often affected by drought worldwide. Future projections from a climate simulation model predict that the combined effects of increasing temperature and changing rainfall patterns will aggravate this drought scenario and may significantly reduce wheat yields unless appropriate varieties are adopted. Wheat is adapted to a wide range of environments due to the diversity in its phenology genes. Wheat phenology offers the opportunity to fight against drought by modifying crop developmental phases according to water availability in target environments. This review summa- rizes recent advances in wheat phenology research, including vernalization (Vrn), photoperiod (Ppd), and also dwarfing (Rht) genes. The alleles, haplotypes, and copy number variation identified for Vrn and Ppd genes respond differently in different climatic conditions, and thus could alter not only the development phases but also the yield. Compared with the model plant Arabidopsis, more phenology genes have not yet been identified in wheat; quantifying their effects in target environments would benefit the breeding of wheat for improved drought tolerance. Hence, there is scope to maximize yields in water-limited envi-ronments by deploying appropriate phenology gene combinations along with Rht genes and other important physiological traits that are associated with drought resistance.
文摘Symbiotic and phenotypic characteristics of thirty rhiobial isolates obtained from root nodules of two cowpea (Vigna unguiculata L. Walp) cultivars that grown in different sites of Fezzan (Southern part of Libya) were studied. Cultural characteristics and cross-nodulation with Arachis hypogega and Faidherbia albida showed that they were slow-growing rhizobia. Each isolate was found to coexist with non-symbiotic bacteria similar in their cultural characteristics to fast-growing rhizobia. All isolates formed symbiosis with the test plants, but different in their nitrogen-fixation efficiency. Numerical analysis of phenotypic characteristics showed that at boundary level of 70% average similarity, the isolates formed four distinguished groups and two isolates remained separate. Most isolates exhibited wide tolerance to acidity, alkalinity and extreme temperatures. They also resistant to some heavy metals such as mercury, copper, zinc, lead, cadmium and aluminum at low concentrations and antibiotics like polymyxin, colistin, bacitracin and nalidixic acid. Isolates displayed different response to salinity ranging from sensitive, which unable to grow in 1% NaCI to resistant and grow at 2% NaCl or above. Urea was hydrolyzed by most of them and carbohydrates utilizations were different. Sucrose and maltose were metabolized by most of the test isolates, whereas, monosaccharide and sugar alcohols were poorly utilized.
基金Supported by Key Scientific Research Program of Higher Education,Department of Education of Henan Province(17A210020)~~
文摘With the slowdown of China economy during 2011-2015, tobacco growing areas were compressing year by year.At the same time, because of the decrease of potassium to chlorine ratio, Chifeng tobacco leaves were no longer as high quality supplying materials in cigarettes of Shanghai Tobacco (Group). And thus, the allocation amount of Chifeng tobacco leaves were reduced. It is necessary to highlight local tobacco characteristics and improve tobacco quality for sustainable development. This research, therefore, reviewed tobacco planting, natural characters, potassium/chlorine rate and proposed suggestions.
文摘A two-year on-farm study was carried out at Eglime in the moist savanna (MS) and Ouake in the dry savanna (DS) of Benin to evaluate the contribution of inoculation of dual-purpose soybean varieties to grain yield of upland NERICA rice fertilized with low N level. In 2005, four dual-purpose, promiscuous soybean varieties (cv. TGx1440-IE; TG×1448-2E; TG×1019-2EB; and TG×1844-18E), and a popular improved variety (cv. Jupiter) were sown in 12 farmer fields with and without Bradyrhizobium japonicum inoculation. There was also land which was left fallow that acted as the control. In 2006, upland interspecific rice (NERICA 1) was sown in all the plots and supplied with 15 kg N haL. Dry matter yield, N accumulation, and net N-balance were significantly enhanced by over 40% with inoculation of cv. TG× 1844-18E than non-inoculation in the DS in comparison to other cultivars. There were no significant effects of inoculation of previous soybean cultivars on soybean grain yield and on the succeeding NERICA rice yield. Averaged over inoculation, previous cv. TG× 1019-2EB plots supplied with only 15 kg N hal gave the highest grain yield, more than twice the yield of control plots in the DS, possibly because of significant production of higher tillers, panicles and harvest index than the other cultivars; and it could be recommended for upland rice-based system for NERICA production.
文摘The effects of two culture systems, conventional and no-till combined the previous crop (lentil and wheat) on soil properties were studied in the experimental site of the station Technical Institute for Field Crops (ITGC) Setif (Algeria) during the crop year 2011/2012. The results indicate that the no-till system affects positively the variables of soil properties and the organic matter has a rate of 2.89% compared to 2.44% in conventional tillage. If the conventional system has an infiltration of moisture relatively higher than that observed for no-till throughout the cycle, the no-tillage is distinguished by a higher storage of moisture at the end of cycle wheat cultivation. The results also indicate that the density (1.44 g/cm), permeability (22.79 cm/h) and soil compaction (12.51 kg/cm) in no-till were significantly higher compared to conventional tillage 1.35 g/cm, 14.13 cm/h, 7.40 kg/cm, respectively.
文摘Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net primary production of a 25-year-old Pinus sylvestris L. (Scots pine) plantation, in a semi-arid region of Mongolia. The above-ground biomass of sample trees was divided into stem wood, stem bark, live branches, dead branches and needles. Total biomass for the stand was only 18.03 Mg ha1, of which 47.6% was found in stem wood, 25.8% in live branches and 14.8% in needles. The growth rate of the Scots pine plantation in the study region was relatively low compared with other regions. In the study area, it was observed that the rate of biomass accumulation in the plantation was very slow; this can be explained by very limited growing conditions and intensive crown closure. The results from this study indicate that it may be necessary to carry out thinning to increase biomass production by reducing competition between trees in the Scotch pine plantation.
文摘In this study, four combinations of crops: rice (C), rice-maize (MCSI), rice-cassava (MCS2) and rice-maize-cassava (MCS3) with 3 m × 3 m each plots at two field areas--Saptosari and Tanjungsari were observed. Both field areas are located in Gunungkidul district, South-Central of Java Island, with that 93% at those areas are 185 m to 500 m above sea level and high proportion of multiple cropping systems (MCS). The aim of this study was to investigate the effect of different cropping method on growth, crop index and yield response to water of rice in rainfed agriculture. Mathematical models were developed to describe rice growth. The rice height was followed monomolecular function and the number of tillers followed exponential polynomial function. Crop index was calculated from climate data during plant growth phase. And yield response to water was calculated from actual evapotranspiration (ETa) and the maximum evapotranspiration (ETm). The results showed that the height of rice was not significantly different between each combination (P 〉 0.05). Number of tillers was also not significant (P 〉 0.05). However, monoculture treatment had more number of tillers than rice in MCS. Crop index of rice at Saptosari was higher than at Tanjungsari. Based on the calculation of evapotranspiration (ET), water deficit at initial was less than at mid-season (ETa 〈 ETm) and affected water stress. Statistical analysis showed that cropping methods did not significantly affect rice growth and yield (P 〉 0.05).
文摘The region of Tlemcen is situated in the north-west of Algeria. The aridity of the climate had lead to the development of the matorral, a state of degradation of the Mediterranean, and the composed xerophytes plants such as doum and diss, had been found. Chamaerops humilis, xerophyte plant, with special morphologic and botanic character presents a resistance of these climatic. The authors have proposed study of fauna closly linked to this plant. A faunistic inventory was realized in the Mansourah area (region of Tlemcen). Four stations have been described. Collecting sample was performed during June 2003-Mar. 2004, replying on sixteen (16) prelevements. The number of species were estimated of about 136, in which 111 are Arthropoda, the Entomofauna represented by 97 species and the other inventory are Arachnida by 8 species and Myriapoda by 6 species. 18 species are related to Gastropoda. The vertebrates are few. The importance of different groups' recolted on the Chamaerops humilis in the four stations is done particular to the insects. Analysis factorial correspondence (A.F.C) show different grouping of animal species.
文摘The parasitic weed Striga poses a serious threat to cereal production in sub-Saharan Africa. For many years, technological packages for the control of this weed were proposed and implemented on farmers' fields. A survey was carried out in farmers' fields in 2010/201l cropping season in selected dryland areas of Tanzania to: (a) determine the Striga plant counts, number of capsules/Striga plant and agronomic practices used by farmers to control Striga; and (b) evaluate the relationship between Striga reproduction, soil chemical characteristics and agronomic practices. Soil samples at 0-20 cm depth were collected from 20 different farmers' fields. The soil samples were analyzed for pH, organic carbon, N, P and K. Results showed that there was low adoption of recommended Striga control methods. Regression analysis of agronomic practices and soil chemical characteristics revealed a positive improvement of soil N and organic carbon and reduction of soil P and K content as one shifted from sole planting to intercropping. The results showed that potassium was highly positively related to number of capsules/Striga plant. There was a reduction in the number of capsules/plant as one moved from sole planting to intercropping. Based on these findings, K in the Striga infested in soils positively influenced Striga reproduction and seed bank replenishment, hence high soil K levels may lead to high Striga incidence.
基金supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil(CNPQ 4652712914-6APQ 0083.2-05/15).
文摘Aims In dry tropical forests,herbaceous species may have dormancy mechanisms and form persistent and transient seed banks in the soil.Evolutionarily acquired,these mechanisms are efficient for the establishment and survival of these herbs,especially in forests with unpredictable climates,such as the Caatinga.Thus,our objective was to verify whether the studied herbaceous species adopt the physical dormancy mechanism and how these natural barriers are overcome,to understand the temporal dynamics existing in the soil seed bank from a Brazilian dry tropical forest.Methods Seeds of five native herbaceous species from the Caatinga forests were selected and submitted to pre-germinative treatments for verifying the presence of physical dormancy.We collected soil samples in the rainy and dry seasons for four consecutive years and monitored the emergence of the selected herbaceous in the greenhouse.We verified the differences in germination and seed bank emergence in the soil by generalized linear models.Important Findings The presence and absence of physical dormancy were observed in seeds from Caatinga herbaceous species.We found intraspecific and interspecific differences in the herbaceous emergence from soil seed banks between years and climatic seasons.In perennial herbs,consecutive lack of emergence between seasons and years was frequent,which suggests a direct relationship with the mechanism of physical dormancy and the environmental conditions necessary to overcome integument barriers.In these species,seed dimorphism and dormancy may confer additional advantages to their survival.Moreover,presenting intermediate levels of physical dormancy in an annual species may be an evolutionary adjustment to rainfall unpredictability.In contrast,we found that the annual herb without dormancy is more sensitive to seasonal and interannual climate changes,as evidenced by the increase and significant reduction of its emergence in the soil seed bank.These differences acquired evolutionarily are advantageous for the establishment of herbaceous populations,mainly in semiarid regions with an unpredictable climate.