In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-...In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.展开更多
As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply vol...As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.展开更多
A novel restoration scheme, Parted Path Shared Restoration (PPSR), was proposed. The major idea of PPSR is the strategy of ‘parted disposal’. PPSR keeps the advantage of Path Based Shared Restoration (PBSR) in utili...A novel restoration scheme, Parted Path Shared Restoration (PPSR), was proposed. The major idea of PPSR is the strategy of ‘parted disposal’. PPSR keeps the advantage of Path Based Shared Restoration (PBSR) in utilization of capacity. In addition, the restoration time of PPSR is much less than that of PBSR. Furthermore, a satisfaction function was proposed to estimate the performance of PPSR. This function takes the utilization of capacity and restoration time into a harmonious and uniform frame. Through theoretical analysis and computer simulation, the performance of PPSR was demonstrated.展开更多
基金supported by National Natural Science Foundation of China(No.61174176)Zhejiang Planning Project of Science and Technology(No.2013C33086)
文摘In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.
基金Project(2018YFE0120100)supported by the National Key R&D Program of ChinaProject(YBPY2040)supported by the Scientific Research Foundation of Graduate School of Southeast University,China。
文摘As the demand for bike-sharing has been increasing,the oversupply problem of bike-sharing has occurred,which leads to the waste of resources and disturbance of the urban environment.In order to regulate the supply volume of bike-sharing reasonably,an estimating model was proposed to quantify the urban carrying capacity(UCC)for bike-sharing through the demand data.In this way,the maximum supply volume of bike-sharing that a city can accommodate can be obtained.The UCC on bike-sharing is reflected in the road network carrying capacity(RNCC)and parking facilities’carrying capacity(PFCC).The space-time consumption method and density-based spatial clustering of application with noise(DBSCAN)algorithm were used to explore the RNCC and PFCC for bike-sharing.Combined with the users’demand,the urban load ratio on bike-sharing can be evaluated to judge whether the UCC can meet users’demand,so that the supply volume of bike-sharing and distribution of the related facilities can be adjusted accordingly.The application of the model was carried out by estimating the UCC and load ratio of each traffic analysis zone in Nanjing,China.Compared with the field survey data,the effect of the proposed algorithm was verified.
文摘A novel restoration scheme, Parted Path Shared Restoration (PPSR), was proposed. The major idea of PPSR is the strategy of ‘parted disposal’. PPSR keeps the advantage of Path Based Shared Restoration (PBSR) in utilization of capacity. In addition, the restoration time of PPSR is much less than that of PBSR. Furthermore, a satisfaction function was proposed to estimate the performance of PPSR. This function takes the utilization of capacity and restoration time into a harmonious and uniform frame. Through theoretical analysis and computer simulation, the performance of PPSR was demonstrated.