For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme,...For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.展开更多
Effects of the speed relaxation time on the optimal velocity car-following model (OVM) with delay time due to driver reaction time proposed by Bando et al.(1995) were studied by numerical methods. Results showed that ...Effects of the speed relaxation time on the optimal velocity car-following model (OVM) with delay time due to driver reaction time proposed by Bando et al.(1995) were studied by numerical methods. Results showed that the OVM including the delay is not physically sensitive to the speed relaxation times. A modified car-following model is proposed to overcome the deficiency. Analyses of the linear stability of the modified model were conducted. It is shown that coexisting flows appear if the initial homogeneous headway of the traffic flow is between critical values. In addition, phase transitions occur on varying the initially homogeneous headway.展开更多
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique...This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.展开更多
An addition scheme applicable to time-delay integration (TDI) CMOS image sensor is proposed,which adds signals in the charge domain in the pixel array.A two-shared pixel structure adopting two-stage charge transfer is...An addition scheme applicable to time-delay integration (TDI) CMOS image sensor is proposed,which adds signals in the charge domain in the pixel array.A two-shared pixel structure adopting two-stage charge transfer is introduced,together with the rolling shutter with an undersampling readout timing.Compared with the conventional TDI addition methods,the proposed scheme can reduce the addition operations by half in the pixel array,which decreases the power consumption of addition circuits outside the pixel array.The timing arrangement and pixel structure are analyzed in detail.The simulation results show that the proposed pixel structure can achieve the charge addition with negligible nonlinearity,therefore the power consumption of the periphery addition circuits can be reduced by half theoretically.展开更多
A robust decentralized H∞ control problem was considered for uncertain multi-channel discrete-time systems with time-delay. The uncertainties were assumed to be time-invariant, norm-bounded, and exist in the system, ...A robust decentralized H∞ control problem was considered for uncertain multi-channel discrete-time systems with time-delay. The uncertainties were assumed to be time-invariant, norm-bounded, and exist in the system, the time-delay and the output matrices. Dynamic output feedback was focused on. A sufficient condition for the multi-channel uncertain discrete time-delay system to be robustly stabilizable with a specified disturbance attenuation level was derived based on the theorem of Lyapunov stability theory. By setting the Lyapunov matrix as block diagonal appropriately according to the desired order of the controller, the problem was reduced to a linear matrix inequality (LMI) which is sufficient to existence condition but much more tractable. An example was given to show the efficiency of this method.展开更多
Time delay or round trip time (RTT) is an important parameter in the model of Internet congestion control. On the one hand, the delay may induce oscillation via the Hopf bifurcation. In the present paper, a congestion...Time delay or round trip time (RTT) is an important parameter in the model of Internet congestion control. On the one hand, the delay may induce oscillation via the Hopf bifurcation. In the present paper, a congestion control model of n dimensions is considered to study the delay-induced oscillation. By linear analysis of the n-dimensional system, the critical delay for the Hopf bifurcation is obtained. To describe the relation between the delay and oscillation analytically, the method of multiple scales (MMS) is employed to obtain the bifurcating periodic solution. On the other hand, it can be understood that the oscillation will increase the risk of congestion for the network system. To avoid the congestion derived from the oscillation, a new control scheme is proposed by perturbing the delay periodically. Particularly, according to our study, it is possible to control the oscillation by perturbing only one of the n delays. This provides a practical scheme for the oscillation control in the real network system. By MMS, the strengths of the perturbations are predicted analytically such that the oscillation disappears. To give an example, an eight-dimensional model is studied in detail. The analytical results are in good agreement with the numerical simulations.展开更多
In this paper, we consider the discrete Hematopoiesis model with a time delay: x(n+1)-x(n)=-r(n)x(n)+a(n)/(1+x^u(n-r)) Sufficient conditions for the existence of a unique uniformly asymptotically sta...In this paper, we consider the discrete Hematopoiesis model with a time delay: x(n+1)-x(n)=-r(n)x(n)+a(n)/(1+x^u(n-r)) Sufficient conditions for the existence of a unique uniformly asymptotically stable positive almost periodic solution are obtained by the work of IS. N. Zhang, G. Zheng, Almost periodic solutions of delay difference systems, Appl. Math. Comput. 131 (2002) 497 516]. Some examples are considered to illustrate the main results.展开更多
Ratio-dependent predator prey models are favored by many animal ecologists recently as more suitable ones for predator-prey interactions where predation involves searching process. In this paper, a ratio-dependent pre...Ratio-dependent predator prey models are favored by many animal ecologists recently as more suitable ones for predator-prey interactions where predation involves searching process. In this paper, a ratio-dependent predator prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.展开更多
Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using t...Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.展开更多
文摘For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.
基金Project (No. G1998030408) supported by the National Basic Re-search Program (973) of China
文摘Effects of the speed relaxation time on the optimal velocity car-following model (OVM) with delay time due to driver reaction time proposed by Bando et al.(1995) were studied by numerical methods. Results showed that the OVM including the delay is not physically sensitive to the speed relaxation times. A modified car-following model is proposed to overcome the deficiency. Analyses of the linear stability of the modified model were conducted. It is shown that coexisting flows appear if the initial homogeneous headway of the traffic flow is between critical values. In addition, phase transitions occur on varying the initially homogeneous headway.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60774039,60974024,and 61074089CityU Research Enhancement Fund 9360127,CityU SRG 7002355
文摘This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.
基金Supported by National Natural Science Foundation of China (No.61036004 and No. 61076024)Ph.D. Programs Foundation of Ministry of Education of China (No. 20100032110031)
文摘An addition scheme applicable to time-delay integration (TDI) CMOS image sensor is proposed,which adds signals in the charge domain in the pixel array.A two-shared pixel structure adopting two-stage charge transfer is introduced,together with the rolling shutter with an undersampling readout timing.Compared with the conventional TDI addition methods,the proposed scheme can reduce the addition operations by half in the pixel array,which decreases the power consumption of addition circuits outside the pixel array.The timing arrangement and pixel structure are analyzed in detail.The simulation results show that the proposed pixel structure can achieve the charge addition with negligible nonlinearity,therefore the power consumption of the periphery addition circuits can be reduced by half theoretically.
基金Project(60634020) supported by the National Natural Science Foundation of ChinaProject(07JJ6138) supported by Natural Science Foundation of Hunan Province, ChinaProject(20060390883) supported by the Postdoctoral Science Foundation of China
文摘A robust decentralized H∞ control problem was considered for uncertain multi-channel discrete-time systems with time-delay. The uncertainties were assumed to be time-invariant, norm-bounded, and exist in the system, the time-delay and the output matrices. Dynamic output feedback was focused on. A sufficient condition for the multi-channel uncertain discrete time-delay system to be robustly stabilizable with a specified disturbance attenuation level was derived based on the theorem of Lyapunov stability theory. By setting the Lyapunov matrix as block diagonal appropriately according to the desired order of the controller, the problem was reduced to a linear matrix inequality (LMI) which is sufficient to existence condition but much more tractable. An example was given to show the efficiency of this method.
基金supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11032009)Shanghai Leading Academic Discipline Project (Grant No. B302)
文摘Time delay or round trip time (RTT) is an important parameter in the model of Internet congestion control. On the one hand, the delay may induce oscillation via the Hopf bifurcation. In the present paper, a congestion control model of n dimensions is considered to study the delay-induced oscillation. By linear analysis of the n-dimensional system, the critical delay for the Hopf bifurcation is obtained. To describe the relation between the delay and oscillation analytically, the method of multiple scales (MMS) is employed to obtain the bifurcating periodic solution. On the other hand, it can be understood that the oscillation will increase the risk of congestion for the network system. To avoid the congestion derived from the oscillation, a new control scheme is proposed by perturbing the delay periodically. Particularly, according to our study, it is possible to control the oscillation by perturbing only one of the n delays. This provides a practical scheme for the oscillation control in the real network system. By MMS, the strengths of the perturbations are predicted analytically such that the oscillation disappears. To give an example, an eight-dimensional model is studied in detail. The analytical results are in good agreement with the numerical simulations.
文摘In this paper, we consider the discrete Hematopoiesis model with a time delay: x(n+1)-x(n)=-r(n)x(n)+a(n)/(1+x^u(n-r)) Sufficient conditions for the existence of a unique uniformly asymptotically stable positive almost periodic solution are obtained by the work of IS. N. Zhang, G. Zheng, Almost periodic solutions of delay difference systems, Appl. Math. Comput. 131 (2002) 497 516]. Some examples are considered to illustrate the main results.
文摘Ratio-dependent predator prey models are favored by many animal ecologists recently as more suitable ones for predator-prey interactions where predation involves searching process. In this paper, a ratio-dependent predator prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.
基金supported in part by HKRGC GrantHKU Strategic Theme Grant on Computational SciencesNational Natural Science Foundation of China under Grant Nos.10971075 and 11271144
文摘Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.