This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentia...This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.展开更多
In this paper, we use the daily ranges of the vertical magnetic intensity of approximately 76 geomagnetic stations from January 1, 2008 to December 31, 2010 to analyze the spatial and temporal characteristics of Z ran...In this paper, we use the daily ranges of the vertical magnetic intensity of approximately 76 geomagnetic stations from January 1, 2008 to December 31, 2010 to analyze the spatial and temporal characteristics of Z ranges. The results are summarized as follows: (1) Temporally, we use regressive analysis and FFT analysis to analyze the data. The results show that the Z component daily ranges of all stations have an obvious cyclical variation, the computed Fourier spectra of all data sets have clearly resolved the required periodicities in the data, in the form of distinct peaks at days 365, 183, 22, and 73, and the power spectra of day 365 is the highest in all periods. (2) In terms of spatial variation, the daily ranges show nonlinear variation with latitude in China. The results show the existence of a point of inflexion (maximal value point) nearby at about 25°N, the daily ranges of Z rise from 15°~25°N and have a good linear decrease variation along with 25°~50°N. (3) Compared with the spatial and temporal variations of Z daily ranges with the Sq current inversion, we found that the spatial and temporal characteristics of Z ranges are decided mainly by the spatio-temporal evolution of the Sq current system. (4) If the latitudes of the maximum amplitudes of variation of the vertical component in the geomagnetic quiet days are roughly taken as the latitudes corresponding to the foci of Sq overhead current system, we can see that these latitudes of foci become higher in summer, are lowest in winter and highest during Equinoxes, displaying conspicuous monthly and daily variations. For two successive geomagnetic quiet days, the latitudes of foci may vary ten degrees.展开更多
A time-variant consensus tracking control problem for networked planar multi-agent systems with non-holonomic constraints is investigated in this paper. In the time-variant consensus tracking problem, a leader agent i...A time-variant consensus tracking control problem for networked planar multi-agent systems with non-holonomic constraints is investigated in this paper. In the time-variant consensus tracking problem, a leader agent is expected to track a desired reference input, simultaneously, follower agents are expected to maintain a time-variant formation. To solve the time-variant consensus tracking problem of planar multi-agent systems with non-holonomic constraints, a time-variant consensus tracking control strategy is designed on the basis of an unidirectional topology structure. One of main contributions of this paper is the time-variant consensus tracking protocol for general time-variant formations of planar multi-agent systems with non-holonomic constraints, the other main contribution of this paper is an active predictive control strategy, where predictions of agents are generated actively, so that the computational efficiency is improved than passive approaches. The proposed control strategy is verified by two types of time-varying formations of wheeled mobile robots, and the experimental results show that the proposed control strategy is effective for general time-variant consensus tracking problems of planar multi-agent systems with non-holonomic constraints in local and worldwide networked environments.展开更多
基金The Major Program of National Natural Science Foundation of China(No.11190015)the National Natural Science Foundation of China(No.61374006)
文摘This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature.
基金supported by the special fundamental research fund of Institute of Geophysics,CEA for Central Public Welfare Research Institutes(DQJB11C10)the fund for the Task of Tracing Earthquake Trend of China Earthquake Administration(Grant No.2010020705)
文摘In this paper, we use the daily ranges of the vertical magnetic intensity of approximately 76 geomagnetic stations from January 1, 2008 to December 31, 2010 to analyze the spatial and temporal characteristics of Z ranges. The results are summarized as follows: (1) Temporally, we use regressive analysis and FFT analysis to analyze the data. The results show that the Z component daily ranges of all stations have an obvious cyclical variation, the computed Fourier spectra of all data sets have clearly resolved the required periodicities in the data, in the form of distinct peaks at days 365, 183, 22, and 73, and the power spectra of day 365 is the highest in all periods. (2) In terms of spatial variation, the daily ranges show nonlinear variation with latitude in China. The results show the existence of a point of inflexion (maximal value point) nearby at about 25°N, the daily ranges of Z rise from 15°~25°N and have a good linear decrease variation along with 25°~50°N. (3) Compared with the spatial and temporal variations of Z daily ranges with the Sq current inversion, we found that the spatial and temporal characteristics of Z ranges are decided mainly by the spatio-temporal evolution of the Sq current system. (4) If the latitudes of the maximum amplitudes of variation of the vertical component in the geomagnetic quiet days are roughly taken as the latitudes corresponding to the foci of Sq overhead current system, we can see that these latitudes of foci become higher in summer, are lowest in winter and highest during Equinoxes, displaying conspicuous monthly and daily variations. For two successive geomagnetic quiet days, the latitudes of foci may vary ten degrees.
基金supported by the National Natural Science Foundation of China under Grant Nos.61333033and 61690212
文摘A time-variant consensus tracking control problem for networked planar multi-agent systems with non-holonomic constraints is investigated in this paper. In the time-variant consensus tracking problem, a leader agent is expected to track a desired reference input, simultaneously, follower agents are expected to maintain a time-variant formation. To solve the time-variant consensus tracking problem of planar multi-agent systems with non-holonomic constraints, a time-variant consensus tracking control strategy is designed on the basis of an unidirectional topology structure. One of main contributions of this paper is the time-variant consensus tracking protocol for general time-variant formations of planar multi-agent systems with non-holonomic constraints, the other main contribution of this paper is an active predictive control strategy, where predictions of agents are generated actively, so that the computational efficiency is improved than passive approaches. The proposed control strategy is verified by two types of time-varying formations of wheeled mobile robots, and the experimental results show that the proposed control strategy is effective for general time-variant consensus tracking problems of planar multi-agent systems with non-holonomic constraints in local and worldwide networked environments.