Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic m...Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.展开更多
Time delay or round trip time (RTT) is an important parameter in the model of Internet congestion control. On the one hand, the delay may induce oscillation via the Hopf bifurcation. In the present paper, a congestion...Time delay or round trip time (RTT) is an important parameter in the model of Internet congestion control. On the one hand, the delay may induce oscillation via the Hopf bifurcation. In the present paper, a congestion control model of n dimensions is considered to study the delay-induced oscillation. By linear analysis of the n-dimensional system, the critical delay for the Hopf bifurcation is obtained. To describe the relation between the delay and oscillation analytically, the method of multiple scales (MMS) is employed to obtain the bifurcating periodic solution. On the other hand, it can be understood that the oscillation will increase the risk of congestion for the network system. To avoid the congestion derived from the oscillation, a new control scheme is proposed by perturbing the delay periodically. Particularly, according to our study, it is possible to control the oscillation by perturbing only one of the n delays. This provides a practical scheme for the oscillation control in the real network system. By MMS, the strengths of the perturbations are predicted analytically such that the oscillation disappears. To give an example, an eight-dimensional model is studied in detail. The analytical results are in good agreement with the numerical simulations.展开更多
We develop and analyze a mathematical model for the transmission dynamics of HIV that accounts for behavioral change. The contact rate is modeled by a decreasing function (response function) of HIV prevalence to ref...We develop and analyze a mathematical model for the transmission dynamics of HIV that accounts for behavioral change. The contact rate is modeled by a decreasing function (response function) of HIV prevalence to reflect a reduction in risky behavior that results from the awareness of individuals to a higher HIV prevalence. The model also includes a distributed delay representing the time needed for individuals to reduce their risky behavior. We study mathematically and numerically the impact of the response function and the distributed delay on the model's dynamics. Threshold values for the delay at which the system destabilizes and periodic solutions can arise through Hopf bifurcation are determined.展开更多
基金supported by the National Natural Science Foundation of China(No. 51975274)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No. HTL-A-19K03)
文摘Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.
基金supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11032009)Shanghai Leading Academic Discipline Project (Grant No. B302)
文摘Time delay or round trip time (RTT) is an important parameter in the model of Internet congestion control. On the one hand, the delay may induce oscillation via the Hopf bifurcation. In the present paper, a congestion control model of n dimensions is considered to study the delay-induced oscillation. By linear analysis of the n-dimensional system, the critical delay for the Hopf bifurcation is obtained. To describe the relation between the delay and oscillation analytically, the method of multiple scales (MMS) is employed to obtain the bifurcating periodic solution. On the other hand, it can be understood that the oscillation will increase the risk of congestion for the network system. To avoid the congestion derived from the oscillation, a new control scheme is proposed by perturbing the delay periodically. Particularly, according to our study, it is possible to control the oscillation by perturbing only one of the n delays. This provides a practical scheme for the oscillation control in the real network system. By MMS, the strengths of the perturbations are predicted analytically such that the oscillation disappears. To give an example, an eight-dimensional model is studied in detail. The analytical results are in good agreement with the numerical simulations.
文摘We develop and analyze a mathematical model for the transmission dynamics of HIV that accounts for behavioral change. The contact rate is modeled by a decreasing function (response function) of HIV prevalence to reflect a reduction in risky behavior that results from the awareness of individuals to a higher HIV prevalence. The model also includes a distributed delay representing the time needed for individuals to reduce their risky behavior. We study mathematically and numerically the impact of the response function and the distributed delay on the model's dynamics. Threshold values for the delay at which the system destabilizes and periodic solutions can arise through Hopf bifurcation are determined.