期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
时变效应模型及在密集追踪数据分析中的应用 被引量:5
1
作者 唐文清 张敏强 方杰 《心理科学》 CSSCI CSCD 北大核心 2020年第2期488-497,共10页
密集追踪数据通常蕴含了心理过程的详细变化信息,反映了某些心理的复杂变化过程。时变效应模型用函数替代恒定的系数,可描述密集追踪数据中随时间推移心理的动态变化过程和时变效应,是分析复杂心理过程的有效方法。在介绍时变效应模型... 密集追踪数据通常蕴含了心理过程的详细变化信息,反映了某些心理的复杂变化过程。时变效应模型用函数替代恒定的系数,可描述密集追踪数据中随时间推移心理的动态变化过程和时变效应,是分析复杂心理过程的有效方法。在介绍时变效应模型的原理后,通过模拟研究考察模型的表现,结果显示:(1)样本量增加可降低函数估计的误差;(2)惩罚样条法的节点数选择与函数的复杂度有关,函数越复杂,所需节点越多;(3)样本量与节点数对函数估计误差的交互效应不显著。进一步应探讨测量次数、数据分布形态、数据缺失等如何影响模型的表现。 展开更多
关键词 密集追踪数据 时变效应 时变效应模型 惩罚样条法
下载PDF
协变量相关对时变效应模型参数估计的影响 被引量:2
2
作者 黄熙彤 张敏强 《心理科学》 CSSCI CSCD 北大核心 2021年第5期1231-1240,共10页
时变效应模型被广泛应用于密集追踪研究中,研究者往往会同时纳入2个或以上协变量。然而,协变量相关对其参数估计的影响较少被研究者关注。本研究在不同类型协变量的情境下,采用蒙特卡洛模拟,探讨协变量相关对时变效应模型参数估计的影响... 时变效应模型被广泛应用于密集追踪研究中,研究者往往会同时纳入2个或以上协变量。然而,协变量相关对其参数估计的影响较少被研究者关注。本研究在不同类型协变量的情境下,采用蒙特卡洛模拟,探讨协变量相关对时变效应模型参数估计的影响,结果表明:(1)在两种协变量类型的情境下,协变量相关都会影响时变效应模型斜率函数β_(1)和斜率函数参β_(2)数估计的准确性;(2)两种协变量类型的情境下,协变量相关和样本量的交互作用都会影响时变效应模型斜率函数β_(1)和斜率函数β_(2)参数估计的准确性;(3)两种协变量类型的情境下,样本量、观测数据缺失率主要通过主效应影响时变效应模型参数估计的准确性。 展开更多
关键词 密集追踪研究 时变效应模型 协变量相关
下载PDF
Predication of plasma concentration of remifentanil based on Elman neural network 被引量:1
3
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《Journal of Central South University》 SCIE EI CAS 2013年第11期3187-3192,共6页
Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacoki... Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics. 展开更多
关键词 Elman neural network REMIFENTANIL plasma concentration predication model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部