We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distan...We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.展开更多
基金supported by the National Natural Science Foundation of China(No.11374105)
文摘We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.