期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
顾及时变非高斯噪声的高斯和滤波及其导航应用
1
作者 戴卿 冯威 许辉熙 《大地测量与地球动力学》 CSCD 北大核心 2021年第3期274-278,共5页
高斯和滤波可利用高斯混合模型精化非高斯噪声随机模型来提高估计精度,但导航测量环境的动态性和复杂性使非高斯噪声具有时变性特征,若GMM不随之调整会导致滤波解算失真。针对该问题,本文提出一种基于位移参数自适应估计的高斯和滤波算... 高斯和滤波可利用高斯混合模型精化非高斯噪声随机模型来提高估计精度,但导航测量环境的动态性和复杂性使非高斯噪声具有时变性特征,若GMM不随之调整会导致滤波解算失真。针对该问题,本文提出一种基于位移参数自适应估计的高斯和滤波算法。首先分析GMM位移参数对非高斯噪声拟合精度的影响,然后利用位移参数自适应技术修正GMM,进而改善高斯和滤波性能。实验结果表明,当GNSS/SINS量测模型存在时变非高斯噪声时,本文算法的滤波结果较传统高斯和滤波算法的波动小,抗干扰能力强,在实际应用中可进一步改善估计精度和稳定性。 展开更多
关键词 GNSS/SINS 时变非高斯噪声 高斯混合模型 位移参数自适应 高斯和滤波
下载PDF
Robust SLAM localization method based on improved variational Bayesian filtering 被引量:1
2
作者 Zhai Hongqi Wang Lihui +1 位作者 Cai Tijing Meng Qian 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期340-349,共10页
Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outli... Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance. 展开更多
关键词 underwater navigation and positioning non-Gaussian distribution time-varying noise variational Bayesian method simultaneous localization and mapping(SLAM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部