Global synchronization of a class of directed dynamical networks with switching topologies is investigated.It is found that if there is a directed spanning tree in the fixed time-average of network topology and the ti...Global synchronization of a class of directed dynamical networks with switching topologies is investigated.It is found that if there is a directed spanning tree in the fixed time-average of network topology and the time-averageis achieved sufficiently fast,then the network will reach global synchronization for sufficiently large coupling strength.展开更多
In this paper we study the mean first passage time (MFPT) over a fluctuation potential barrier driven by a coupled noise. It is shown that the MFPT over the fluctuation potential barrier displays resonant activation...In this paper we study the mean first passage time (MFPT) over a fluctuation potential barrier driven by a coupled noise. It is shown that the MFPT over the fluctuation potential barrier displays resonant activations as the function of the flipping rate of the fluctuation potential barrier, and as the function of the dichotomous noise transition rate.展开更多
基金Supported by the Natural Science Foundation of Hohai University under Grant No.2008429211
文摘Global synchronization of a class of directed dynamical networks with switching topologies is investigated.It is found that if there is a directed spanning tree in the fixed time-average of network topology and the time-averageis achieved sufficiently fast,then the network will reach global synchronization for sufficiently large coupling strength.
基金The project supported by National Natural Science Foundation of China under Grant No. 10375009, and the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry and by K.C. Wong Magna Fund in Ningbo University
文摘In this paper we study the mean first passage time (MFPT) over a fluctuation potential barrier driven by a coupled noise. It is shown that the MFPT over the fluctuation potential barrier displays resonant activations as the function of the flipping rate of the fluctuation potential barrier, and as the function of the dichotomous noise transition rate.